[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Blink: Lightweight Sample Runs for Cost Optimization of Big Data Applications

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2022)

Abstract

Distributed in-memory data processing engines accelerate iterative applications by caching datasets in memory rather than recomputing them in each iteration. Selecting a suitable cluster size for caching these datasets plays an essential role in achieving optimal performance. We present Blink, an autonomous sampling-based framework, which predicts sizes of cached datasets and selects optimal cluster size without relying on historical runs. We evaluate Blink on iterative, real-world, machine learning applications. With an average sample runs cost of 4.6% compared to the cost of optimal runs, Blink selects the optimal cluster size, saving up to 47.4% of execution cost compared to average cost .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Sayeh, H., Jibril, M.A., Bin Saeed, M.W., Sattler, K.U.: SparkCAD: caching anomalies detector for spark applications. In: VLDB 2022 (2022)

    Google Scholar 

  2. Al-Sayeh, H., Jibril, M.A., Memishi, B., Sattler, K.U.: Blink: lightweight sample runs for cost optimization of big data applications. In: CoRR (2022). https://arxiv.org/abs/2207.02290

  3. Al-Sayeh, H., Memishi, B., Jibril, M.A., Paradies, M., Sattler, K.U.: Juggler: autonomous cost optimization and performance prediction of big data applications. In: ACM SIGMOD 2022 (2022)

    Google Scholar 

  4. Al-Sayeh, H., Memishi, B., Paradies, M., Sattler, K.U.: Masha: sampling-based performance prediction of big data applications in resource-constrained clusters. In: VLDB DISPA 2020 (2020)

    Google Scholar 

  5. Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M., Zhang, M.: CherryPick: adaptively unearthing the best cloud configurations for big data analytics. In: USENIX NSDI 2017 (2017)

    Google Scholar 

  6. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS 1967 (Spring), Spring Joint Computer Conference (1967)

    Google Scholar 

  7. Chakaravarthy, V.T., Pandit, V., Sabharwal, Y.: Analysis of sampling techniques for association rule mining. In: ICDT 2009 (2009)

    Google Scholar 

  8. Hamidi, H., Mousavi, R.: Analysis and evaluation of a framework for sampling database in recommenders. J. Glob. Inf. Manag. 26, 41–57 (2018)

    Article  Google Scholar 

  9. Kunjir, M., Babu, S.: Black or white? How to develop an AutoTuner for memory-based analytics. In: ACM SIGMOD 2020 (2020)

    Google Scholar 

  10. Li, H., et al.: Detecting cache-related bugs in spark applications. In: ACM SIGSOFT 2020 (2020)

    Google Scholar 

  11. Meng, X., et al.: MLlib: machine learning in apache spark. J. Mach. Learn. Res. 17, 1235–1241 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Perez, T.B.G., Zhou, X., Cheng, D.: Reference-distance eviction and prefetching for cache management in spark. In: ACM ICPP 2018 (2018)

    Google Scholar 

  13. Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator. In: ACM SoCC 2013 (2013)

    Google Scholar 

  14. Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient performance prediction for large-scale advanced analytics. In: USENIX NSDI 2016 (2016)

    Google Scholar 

  15. Xu, L., Li, M., Zhang, L., Butt, A.R., Wang, Y., Hu, Z.Z.: MEMTUNE: dynamic memory management for in-memory data analytic platforms. In: IEEE IPDPS 2016 (2016)

    Google Scholar 

  16. Yu, Y., Wang, W., Zhang, J., Letaief, K.B.: LRC: dependency-aware cache management for data analytics clusters. In: IEEE INFOCOM 2017 (2017)

    Google Scholar 

  17. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: USENIX NSDI 2012 (2012)

    Google Scholar 

  18. Zhu, Z., Shen, Q., Yang, Y., Wu, Z.: MCS: memory constraint strategy for unified memory manager in spark. In: IEEE ICPADS 2017 (2017)

    Google Scholar 

Download references

Acknowledgement

This research was partially funded by the Thuringian Ministry for Economy, Science and Digital Society under the project thurAI and by the Carl-Zeiss-Stiftung under the project MemWerk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Al-Sayeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Sayeh, H., Jibril, M.A., Memishi, B., Sattler, KU. (2022). Blink: Lightweight Sample Runs for Cost Optimization of Big Data Applications. In: Chiusano, S., et al. New Trends in Database and Information Systems. ADBIS 2022. Communications in Computer and Information Science, vol 1652. Springer, Cham. https://doi.org/10.1007/978-3-031-15743-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15743-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15742-4

  • Online ISBN: 978-3-031-15743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics