[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Insight-Based Vocalization of OLAP Sessions

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2022)

Abstract

Carrying out OLAP analyses in hands-free scenarios requires lean forms of communication between the users and the system, based for instance on natural language. In this paper we introduce VOOL, a framework specifically devised for vocalizing the insights resulting from OLAP sessions. VOOL is self-configurable, extensible, and is aware of the user’s intentions expressed by OLAP operators. To avoid overwhelming the user with very long descriptions, we pursue the vocalization of selected insights automatically extracted from query results. These insights are detected by a set of modules, each returning a set of independent insights that characterize data. After describing and formalizing our approach, we evaluate it in terms of efficiency and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey of recent natural language interfaces for databases. VLDB J. 28(5), 793–819 (2019). https://doi.org/10.1007/s00778-019-00567-8

    Article  Google Scholar 

  2. Bie, T.: Subjective interestingness in exploratory data mining. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 19–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8_3

    Chapter  Google Scholar 

  3. Brysbaert, M.: How many words do we read per minute? A review and meta-analysis of reading rate. J. Mem. Lang. 109, 104047 (2019)

    Article  Google Scholar 

  4. Das, M., Amer-Yahia, S., Das, G., Yu, C.: MRI: meaningful interpretations of collaborative ratings. Proc. VLDB Endow. 4(11), 1063–1074 (2011)

    Article  Google Scholar 

  5. Deutch, D., Frost, N., Gilad, A.: Explaining natural language query results. VLDB J. 29(1), 485–508 (2020)

    Article  Google Scholar 

  6. El, O.B., Milo, T., Somech, A.: Towards autonomous, hands-free data exploration. In: Proceedings of CIDR (2020)

    Google Scholar 

  7. Francia, M., Gallinucci, E., Golfarelli, M.: COOL: a framework for conversational OLAP. Inf. Syst. 104, 101752 (2022)

    Article  Google Scholar 

  8. Francia, M., Golfarelli, M., Marcel, P., Rizzi, S., Vassiliadis, P.: Assess queries for interactive analysis of data cubes. In: Proceedings of EDBT, pp. 121–132 (2021)

    Google Scholar 

  9. Francia, M., Golfarelli, M., Rizzi, S.: A-BI\({}^{\text{+ }}\): a framework for augmented business intelligence. Inf. Syst. 92, 101520 (2020)

    Article  Google Scholar 

  10. Francia, M., Marcel, P., Peralta, V., Rizzi, S.: Enhancing cubes with models to describe multidimensional data. Inf. Syst. Front. 24(1), 31–48 (2022)

    Article  Google Scholar 

  11. Gkesoulis, D., Vassiliadis, P., Manousis, P.: CineCubes: aiding data workers gain insights from OLAP queries. Inf. Syst. 53, 60–86 (2015)

    Article  Google Scholar 

  12. Golab, L., Karloff, H.J., Korn, F., Srivastava, D.: Data auditor: exploring data quality and semantics using pattern tableaux. Proc. VLDB Endow. 3(2), 1641–1644 (2010)

    Article  Google Scholar 

  13. Golab, L., Srivastava, D.: Exploring data using patterns: a survey and open problems. In: Proceedings of DOLAP@EDBT/ICDT, pp. 116–120 (2021)

    Google Scholar 

  14. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data warehouses. Int. J. Cooper. Inf. Syst. 7(2–3), 215–247 (1998)

    Article  Google Scholar 

  15. Hyde, J.: Foodmart. https://github.com/julianhyde/foodmart-data-mysql. Accessed 18 Jan 2021

  16. Kellerer, H., Pferschy, U., Pisinger, D.: The multiple-choice knapsack problem. In: Knapsack Problems, pp. 317–347. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7_11

  17. Li, F., Jagadish, H.V.: Understanding natural language queries over relational databases. SIGMOD Rec. 45(1), 6–13 (2016)

    Article  Google Scholar 

  18. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)

    Article  Google Scholar 

  19. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: Proceedings of ICDM, pp. 413–422 (2008)

    Google Scholar 

  20. Luo, Z.W., Ling, T.W., Ang, C.H., Lee, S.Y., Cui, B.: Range top/bottom k queries in OLAP sparse data cubes. In: Mayr, H.C., Lazansky, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 678–687. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44759-8_66

    Chapter  Google Scholar 

  21. Lyons, G., Tran, V., Binnig, C., Çetintemel, U., Kraska, T.: Making the case for query-by-voice with echoquery. In: Proceedings of SIGMOD, pp. 2129–2132 (2016)

    Google Scholar 

  22. Romero, O., Abelló, A.: On the need of a reference algebra for OLAP. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99–110. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74553-2_10

    Chapter  Google Scholar 

  23. Saha, D., Floratou, A., Sankaranarayanan, K., Minhas, U.F., Mittal, A.R., Özcan, F.: ATHENA: an ontology-driven system for natural language querying over relational data stores. PVLDB 9(12), 1209–1220 (2016)

    Google Scholar 

  24. Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proceedings of VLDB, pp. 42–53 (1999)

    Google Scholar 

  25. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proceedings of VLDB, pp. 307–316 (2000)

    Google Scholar 

  26. Simitsis, A., Koutrika, G., Alexandrakis, Y., Ioannidis, Y.E.: Synthesizing structured text from logical database subsets. In: Proceedings of EDBT, pp. 428–439 (2008)

    Google Scholar 

  27. Song, L., Gan, J., Bao, Z., Ruan, B., Jagadish, H.V., Sellis, T.: Incremental preference adjustment: a graph-theoretical approach. VLDB J. 29(6), 1475–1500 (2020). https://doi.org/10.1007/s00778-020-00623-8

    Article  Google Scholar 

  28. Trummer, I., Wang, Y., Mahankali, S.: A holistic approach for query evaluation and result vocalization in voice-based OLAP. In: Proceedings of SIGMOD, pp. 936–953 (2019)

    Google Scholar 

  29. Zgraggen, E., Zhao, Z., Zeleznik, R.C., Kraska, T.: Investigating the effect of the multiple comparisons problem in visual analysis. In: Proceedings of CHI, p. 479 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Rizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Francia, M., Gallinucci, E., Golfarelli, M., Rizzi, S. (2022). Insight-Based Vocalization of OLAP Sessions. In: Chiusano, S., Cerquitelli, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2022. Lecture Notes in Computer Science, vol 13389. Springer, Cham. https://doi.org/10.1007/978-3-031-15740-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15740-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15739-4

  • Online ISBN: 978-3-031-15740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics