Abstract
Modern distributed systems require communicating agents to agree on a shared, formal semantics for the data they exchange and operate upon. The Semantic Web offers tools to encode semantics in the form of ontologies, where data is represented in the form of knowledge graphs (KG). Applying such tools to intelligent agents equipped with machine learning (ML) capabilities is of particular interest, as it may enable a higher degree of interoperability among heterogeneous agents. Indeed, inputs and outputs of ML models can be formalised through ontologies, while the data they operate upon can be represented as KG.
In this paper we explore the combination of Semantic Web tools with knowledge extraction—that is, a research line aimed at extracting intelligible rules mimicking the behaviour of ML predictors, with the purpose of explaining their behaviour. Along this line, we study whether and to what extent ontologies and KG can be exploited as both the source and the outcome of a rule extraction procedure. In other words, we investigate the extraction of semantic rules out of sub-symbolic predictors trained upon data as KG—possibly adhering to some ontology. In doing so, we extend our PSyKE framework for rule extraction with Semantic Web support. In practice, we make PSyKE able to (i) train ML predictors out of OWL ontologies and RDF knowledge graphs, and (ii) extract semantic knowledge out of them, in the form of SWRL rules. A discussion among the major benefits and issues of our approach is provided, along with a description of the overall workflow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://owlready2.readthedocs.io [Online; last accessed February 28, 2022].
- 2.
https://archive.ics.uci.edu/ml/datasets/iris [Online; last accessed 5 March 2022].
References
Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6), 373–389 (1995). https://doi.org/10.1016/0950-7051(96)81920-4
Azcarraga, A., Liu, M.D., Setiono, R.: Keyword extraction using backpropagation neural networks and rule extraction. In: The 2012 International Joint Conference on Neural Networks (IJCNN 2012), pp. 1–7. IEEE (2012). https://doi.org/10.1109/IJCNN.2012.6252618
Baesens, B., Setiono, R., De Lille, V., Viaene, S., Vanthienen, J.: Building credit-risk evaluation expert systems using neural network rule extraction and decision tables. In: Storey, V.C., Sarkar, S., DeGross, J.I. (eds.) ICIS 2001 Proceedings, pp. 159–168. Association for Information Systems (2001). http://aisel.aisnet.org/icis2001/20
Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit-risk evaluation. Manage. Sci. 49(3), 312–329 (2003). https://doi.org/10.1287/mnsc.49.3.312.12739
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001). https://www.scientificamerican.com/article/the-semantic-web/
Bologna, G., Pellegrini, C.: Three medical examples in neural network rule extraction. Phys. Med. 13, 183–187 (1997). https://archive-ouverte.unige.ch/unige:121360
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)
Ciatto, G., Calegari, R., Omicini, A., Calvaresi, D.: Towards XMAS: eXplainability through Multi-Agent Systems. In: Savaglio, C., Fortino, G., Ciatto, G., Omicini, A. (eds.) AI &IoT 2019 - Artificial Intelligence and Internet of Things 2019, CEUR Workshop Proceedings, vol. 2502, pp. 40–53. Sun SITE Central Europe, RWTH Aachen University (2019), http://ceur-ws.org/Vol-2502/paper3.pdf
Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based explanations in AI: towards an abstract framework. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7_1
Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37–45. Elsevier (1994). https://doi.org/10.1016/B978-1-55860-335-6.50013-1
Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp. 24–30. The MIT Press (1996). http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
d’Amato, C.: Machine learning for the semantic web: lessons learnt and next research directions. Semant. Web 11(1), 195–203 (2020). https://doi.org/10.3233/SW-200388
Franco, L., Subirats, J.L., Molina, I., Alba, E., Jerez, J.M.: Early breast cancer prognosis prediction and rule extraction using a new constructive neural network algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1004–1011. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73007-1_121
Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD Explor. Newsl. 15(1), 1–10 (2014). https://doi.org/10.1145/2594473.2594475
Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014). https://doi.org/10.1007/s10817-014-9305-1
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018). https://doi.org/10.1145/3236009
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI - explainable artificial intelligence. Sci. Robot. 4(37) (2019). https://doi.org/10.1126/scirobotics.aay7120
Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders. Artif. Intell. Med. 20(3), 205–216 (2000). https://doi.org/10.1016/s0933-3657(00)00064-6
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer (second edition). W3C Recommendation 11 December 2012 (2012). https://www.w3.org/TR/owl2-primer
Hoekstra, R.: The knowledge reengineering bottleneck. Semant. Web 1(1–2), 111–115 (2010). https://doi.org/10.3233/SW-2010-0004
Hofmann, A., Schmitz, C., Sick, B.: Rule extraction from neural networks for intrusion detection in computer networks. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1259–1265. IEEE (2003). https://doi.org/10.1109/ICSMC.2003.1244584
Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 21 May 2004 (2004). https://www.w3.org/Submission/SWRL
Huysmans, J., Baesens, B., Vanthienen, J.: ITER: an algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11823728_26
Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141–154 (2011). https://doi.org/10.1016/j.dss.2010.12.003
Lachiche, N.: Propositionalization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 812–817. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8_680
Lamy, J.: Owlready: ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies. Artif. Intell. Med. 80, 11–28 (2017). https://doi.org/10.1016/j.artmed.2017.07.002
Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018). https://doi.org/10.1145/3236386.3241340
Maamar, Z., Moulin, B.: Interoperability of distributed and heterogeneous systems based on software agent-oriented frameworks. In: Kandzia, P., Klusch, M. (eds.) CIA 1997. LNCS, vol. 1202, pp. 248–259. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62591-7_38
Manola, F., Miller, E., McBride, B.: Resource description framework (RDF) primer. W3C Recommendation 10 February 2004 (2004). https://www.w3.org/TR/rdf-primer
Motik, B., Shearer, R.D.C., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36, 165–228 (2009). https://doi.org/10.1613/jair.2811
Murphy, P.M., Pazzani, M.J.: ID2-of-3: constructive induction of M-of-N concepts for discriminators in decision trees. In: Machine Learning Proceedings 1991, pp. 183–187. Elsevier (1991). https://doi.org/10.1016/B978-1-55860-200-7.50040-4. 8th International Conference (ML 1991), Evanston, IL, USA
Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987). https://doi.org/10.1016/S0020-7373(87)80053-6
Quinlan, J.R.: C4.5: Programming for Machine Learning. Morgan Kauffmann (1993). https://dl.acm.org/doi/10.5555/152181
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x
Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021–22nd Workshop “From Objects to Agents”. CEUR Workshop Proceedings, vol. 2963, pp. 29–48. Sun SITE Central Europe, RWTH Aachen University (2021). http://ceur-ws.org/Vol-2963/paper14.pdf. 22nd Workshop “From Objects to Agents” (WOA 2021), Bologna, Italy, 1–3 September Proceedings (2021)
Sabbatini, F., Ciatto, G., Omicini, A.: GridEx: an algorithm for knowledge extraction from black-box regressors. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol. 12688, pp. 18–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82017-6_2
Saleem, A., Honeth, N., Nordström, L.: A case study of multi-agent interoperability in IEC 61850 environments. In: IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Europe 2010, 11–13 October 2010, Gothenburg, Sweden, pp. 1–8. IEEE (2010). https://doi.org/10.1109/ISGTEUROPE.2010.5638876
Setiono, R., Baesens, B., Mues, C.: Rule extraction from minimal neural networks for credit card screening. Int. J. Neural Syst. 21(04), 265–276 (2011). https://doi.org/10.1142/S0129065711002821
Shearer, R.D.C., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In: Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) Proceedings of the Fifth OWLED Workshop on OWL: Experiences and Directions, Collocated with the 7th International Semantic Web Conference (ISWC-2008), Karlsruhe, Germany, 26–27 October 2008. CEUR Workshop Proceedings, vol. 432. CEUR-WS.org (2008). http://ceur-ws.org/Vol-432/owled2008eu_submission_12.pdf
Siorpaes, K., Hepp, M.: OntoGame: towards overcoming the incentive bottleneck in ontology building. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007, Part II. LNCS, vol. 4806, pp. 1222–1232. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76890-6_50
Sirin, E., Parsia, B.: Pellet: an OWL DL reasoner. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 International Workshop on Description Logics (DL2004), Whistler, British Columbia, Canada, 6–8 June 2004. CEUR Workshop Proceedings, vol. 104. CEUR-WS.org (2004). http://ceur-ws.org/Vol-104/30Sirin-Parsia.pdf
Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007). https://doi.org/10.1016/j.websem.2007.03.004
Steiner, M.T.A., Steiner Neto, P.J., Soma, N.Y., Shimizu, T., Nievola, J.C.: Using neural network rule extraction for credit-risk evaluation. Int. J. Comput. Sci. Netw. Secur. 6(5A), 6–16 (2006). http://paper.ijcsns.org/07_book/200605/200605A02.pdf
Acknowledgments
This paper is partially supported by the CHIST-ERA IV project CHIST-ERA-19-XAI-005, co-funded by EU and the Italian MUR (Ministry for University and Research).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sabbatini, F., Ciatto, G., Omicini, A. (2022). Semantic Web-Based Interoperability for Intelligent Agents with PSyKE. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds) Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2022. Lecture Notes in Computer Science(), vol 13283. Springer, Cham. https://doi.org/10.1007/978-3-031-15565-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-15565-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15564-2
Online ISBN: 978-3-031-15565-9
eBook Packages: Computer ScienceComputer Science (R0)