Abstract
Nowadays, swarm intelligence shows a high accuracy while solving difficult problems, including image processing problem. Image Edge detection is a complex optimization problem due to the high-resolution images involving large matrix of pixels. The current work describes several sensitive to the environment models involving swarm intelligence. The agents’ sensitivity is used in order to guide the swarm to obtain the best solution. Both theoretical general guidance and a practical example for a particular swarm are included. The quality of results is measured using several known measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Matei, O.: Defining an ontology for the radiograph images segmentation. In: Proceedings International Conference on Development and Application Systems, Suceava, Romania, pp. 266–271 (2008)
Matei, O.: Applying evolution strategies for chest radiographs segmentation. Comp. Sci. J. Moldova 14(3), 324–344 (2006)
Marginean, A.N., et al.: Reliable learning with PDE-based CNNs and dense nets for detecting COVID-19, pneumonia, and tuberculosis from chest X-ray images. Mathematics 9, 1–20 (2021). https://doi.org/10.3390/math9040434
Grassé, P.-P.: La Reconstruction du nid et les coordinations interindividuelles chez bellicositermes Natalensis et Cubitermes sp. La theorie de la stigmergie: Essai d’interpretation du comportement des termites constructeurs. Insect Sociaux 6, 41–80 (1959)
Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 9, 317–365 (1998)
Chira, C., et al.: Stigmergic agent optimization. Romanian J. Inf. Sci. Technol. 9(3), 175–183 (2006)
Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P., et al. (eds.) Robots and Biological Systems: Towards a New Bionics? NATO ASI Series, vol 102, pp. 703–712. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-58069-7_38
Grosan, C., Abraham, A., Chis, M.: Swarm intelligence in data mining. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Swarm Intelligence in Data Mining. Studies in Computational Intelligence, vol. 34, pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-34956-3_1
Kumar, A., Rathore, P.S., Diaz, V.G., Agrawal, R.: Swarm Intelligence Optimization: Algorithms and Applications. Wiley-Scrivener, Beverly (2021)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 International Conference on Neural Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Meshoul, S., Batouche, M.: Ant colony system with extremal dynamics for point matching and pose estimation. In: Proceedings of the 16th International Conference on Pattern Recognition, Quebec, Canada, vol. 3, pp. 823–826. IEEE (2002)
Nezamabadi-Pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algorithms. Soft. Comput. 10(7), 623–628 (2006)
Jevtić, A., et al.: Edge detection using ant colony search algorithm and multiscale contrast enhancement. In: International Conference on Systems, Man and Cybernetics, San Antonio, Texas, USA, pp. 2193–2198. IEEE (2009)
Verma, O.P., Singhal, P., Garg, S., Chauhan, D.S.: Edge detection using adaptive thresholding and ant colony optimization. In: Proceedings of the World Congress Information and Communication Technologies, WICT 2011, pp. 313–318 (2011)
Chaudhary, R., Patel, A., Kumar, S., Tomar, S.: Edge detection using particle swarm optimization technique. In: International Conference on Computing, Communication and Automation (ICCCA), pp. 363–367. IEEE, Gagotias University, India (2017). https://doi.org/10.1109/CCAA.2017.8229843
Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., De Baets, B.: A gravitational approach to edge detection based on triangular norms. Pattern Recogn. 43(11), 3730–3741 (2010)
Pintea, C.-M., Pop, P.C.: Sensor networks security based on sensitive robots agents. A conceptual model. In: Herrero, Á. (ed.) Advances in Intelligent Systems and Computing, vol. 189, pp. 47–56. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-33018-6
Pintea, C.-M., Pop, P.C.: Sensitive ants for denial jamming attack on wireless sensor network. In: Herrero, Á. (ed.) Advances in Intelligent and Soft Computing, vol. 239, pp. 409–418. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01854-6_42
Ticala, C., Pintea, C.-M., Ludwig, S.A., Hajdu-Macelaru, M., Matei, O., Pop, P.C.: Fuzzy index evaluating image edge detection obtained with ant colony optimization. In: FUZZ-IEEE 2022, Padua Italy. IEEE (2022, accepted paper)
Pintea, C.-M., Matei, O., Ramadan, R.A., Pavone, M., Niazi, M., Azar, A.T.: A fuzzy approach of sensitivity for multiple colonies on ant colony optimization. In: Balas, V.E., Jain, L.C., Balas, M.M. (eds.) SOFA 2016. AISC, vol. 634, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62524-9_8
Ticala, C., Zelina, I., Pintea, C.-M.: Admissible perturbation of demicontractive operators within ant algorithms for medical images edge detection. Mathematics 8(1040), 1–13 (2020). https://doi.org/10.3390/math8061040
Ticala, C., Pintea, C.-M., Matei, O.: Sensitive ant algorithm for edge detection in medical images. Appl. Sci. 11(23), 1–10, Article no. 11303 (2021). https://doi.org/10.3390/app112311303
Pintea, C.-M., Ticala, C.: Medical image processing: a brief survey and a new theoretical hybrid ACO model. In: Hatzilygeroudis, I., Palade, V., Prentzas, J. (eds.) Combinations of Intelligent Methods and Applications. SIST, vol. 46, pp. 117–134. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26860-6_7
Tian, J., Yu, W., Xie, S.: An ant colony optimization algorithm for image edge detection. In: Congress on Evolutionary Computation, pp. 751–756. IEEE (2008)
Chira, C., et al.: Learning sensitive stigmergic agents for solving complex problems. Comput. Inform. 29(3), 337–356 (2010)
Pintea, C.-M., Chira, C., Dumitrescu, D., Pop, P.C.: A sensitive metaheuristic for solving a large optimization problem. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 551–559. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77566-9_48
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
X-Ray Hand. Vista Medical pack. License: Free for non commercial use. ID, 236487. https://www.iconspedia.com/. Accessed 5 Aug 2021
Head CT. Online medical free image. https://www.libpng.org/pub/png/pngvrml/ct2.9-128x128.png. Accessed 5 Aug 2021
Denoise image using Deep Neural Network. MATLAB Central. https://www.mathworks.com/help/images/ref/denoiseimage.html
Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive Machine Learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45507-5_6
Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C.M., Palade, V.: A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop. Creative Math. Inf. 28(2), 121–134 (2019)
Holzinger, A., et al.: Interactive machine learning: experimental evidence for the human in the algorithmic loop: a case study on ant colony optimization. Appl. Intell. 49(7), 2401–2414 (2019). https://doi.org/10.1007/s10489-018-1361-5
Chira, C., Pintea, C.-M., Dumitrescu, D.: Heterogeneous sensitive ant model for combinatorial optimization. In: GECCO 2008 Proceedings, Atlanta, Georgia, USA, pp. 163–164 (2008). https://doi.org/10.1145/1389095.1389120
Chira, C., Pintea, C.-M., Dumitrescu, D.: Sensitive stigmergic agent systems: a hybrid approach to combinatorial optimization. In: Corchado, E., et al. (eds.) Advances in Soft Computing, vol. 44, pp. 33–39. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-74972-1_6
Chira, C., Pintea, C.-M., Dumitrescu, D.: Sensitive stigmergic agent systems. In: Tuyls, K., et al. (eds.) ALAMAS Symposium Proceedings, Maastricht, Netherlands, no. 07–04, pp. 51–57 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ticala, C., Pintea, CM., Crisan, G.C., Matei, O., Hajdu-Macelaru, M., Pop, P.C. (2022). Aspects on Image Edge Detection Based on Sensitive Swarm Intelligence. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol 13469. Springer, Cham. https://doi.org/10.1007/978-3-031-15471-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-15471-3_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15470-6
Online ISBN: 978-3-031-15471-3
eBook Packages: Computer ScienceComputer Science (R0)