Abstract
AI applications are increasing in the field of education, from laboratory set-ups to contemporary and complex learning systems. A great example of such systems is AI-enabled adaptive learning systems (AI-ALS) that promote adaptive learning. Despite its promised potential, there are challenges such as design issues, highly complex models, and lack of evidence-based guidelines and design principles that hinder the large-scale adoption and implementation of AI-ALS. The goal of this paper thus is to establish a set of empirically grounded design principles (DPs) of AI-ALS, that would serve well in a university context. 22 interviews were con-ducted with experts knowledgeable about the design and development of AI-ALS. Several rounds of coding and deep analysis of the expert interviews revealed features and functionalities of AI-ALS; purposes for designing and using AI-ALS; and recommended improvements for AI-ALS as requirements. These requirements were translated to 13 preliminary DPs. The findings of this study serve as a guide on how to better design AI-ALS, that will improve the learning experiences of students.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Park, H., Kim, K., Robertson, C.: The impact of active learning with adaptive learning systems in general education information technology courses. In: SAIS 2018 Proceedings (2018)
Pappas, I.O., Giannakos, M.N.: Rethinking learning design in IT education during a pandemic. In: Frontiers in Education, vol. 6 (2021)
Xie, H., Chu, H.C., Hwang, G.J., Wang, C.C.: Trends and development in technology-enhanced adaptive/personalized learning: a systematic review of journal publications from 2007 to 2017. Comput. Educ. 140 (2019)
Nguyen, A., Gardner, L., Sheridan, D.: Data analytics in higher education: an integrated view. J. Inf. Syst. Educ. 31(1), 61–71 (2020)
Verdú, E., et al.: Intelligent tutoring interface for technology enhanced learning in a course of computer network design. In: Proceedings - Frontiers in Education Conference, FIE 2015, vol. 2015-Febru, no. February (2015)
Baker, R.S.: Stupid tutoring systems, intelligent humans. Int. J. Artif. Intell. Educ. 26(2), 600–614 (2016). https://doi.org/10.1007/s40593-016-0105-0
Kabudi, T., Pappas, I., Olsen, D.H.: AI-enabled adaptive learning systems: a systematic mapping of the literature. Comput. Educ. Artif. Intell. 2, 100017 (2021)
Li, A.T., Liu, D., Xu, S.X.: Design challenge levels in e-learning? Insights from a large-scale field experiment. In: International Conference on Information Systems, ICIS 2020 - Making Digital Inclusive: Blending the Local and the Global (2020)
Wambsganss, T., Rietsche, R.: Towards designing an adaptive argumentation learning tool. In: 40th International Conference on Information Systems, ICIS 2019 (2019)
Nguyen, A., Tuunanen, T., Gardner, L., Sheridan, D.: Design principles for learning analytics information systems in higher education. Eur. J. Inf. Syst. 30(5), 541–568 (2021)
Zhang, K., Aslan, A.B.: AI technologies for education: recent research & future directions. Comput. Educ. Artif. Intell. 2, 100025 (2021)
Essa, A.: A possible future for next generation adaptive learning systems. Smart Learn. Environ. 3(1), 1–24 (2016). https://doi.org/10.1186/s40561-016-0038-y
van der Vorst, T., Jelicic, N.: Artificial Intelligence in Education: Can AI bring the full potential of personalized learning to education? Calgary: International Telecommunications Society (ITS) (2019)
Kabudi, T., Pappas, I., Olsen, D.H.: Systematic literature mapping on AI-enabled contemporary learning systems. In: 26th Americas Conference on Information Systems, AMCIS 2020 (2020)
Addanki, K., Holdsworth, J., Hardy, D., Myers, T.: Academagogy for enhancing adult online learner engagement in higher education. In: Proceedings of the 2020 AIS SIGED International Conference on Information Systems Education and Research (2020)
Hou, M., Fidopiastis, C.: A generic framework of intelligent adaptive learning systems: from learning effectiveness to training transfer. Theor. Issues Ergon. Sci. 18(2), 167–183 (2017)
Bogner, A., Littig, B., Menz, W.: Introduction: expert interviews—an introduction to a new methodological debate. In: Interviewing Experts, pp. 1–13. Palgrave Macmillan, London (2009)
Mergel, I., Edelmann, N., Haug, N.: Defining digital transformation: results from expert interviews. Gov. Inf. Q. (2019)
Creswell, J.W., Creswell, J.D.: Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications (2017)
Giannakos, M.N., Sharma, K., Pappas, I.O., Kostakos, V., Velloso, E.: Multimodal data as a means to understand the learning experience. Int. J. Inf. Manag. 48, 108–119 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Kabudi, T., Pappas, I.O., Olsen, D.H. (2022). Deriving Design Principles for AI-Adaptive Learning Systems: Findings from Interviews with Experts. In: Papagiannidis, S., Alamanos, E., Gupta, S., Dwivedi, Y.K., Mäntymäki, M., Pappas, I.O. (eds) The Role of Digital Technologies in Shaping the Post-Pandemic World. I3E 2022. Lecture Notes in Computer Science, vol 13454. Springer, Cham. https://doi.org/10.1007/978-3-031-15342-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-15342-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15341-9
Online ISBN: 978-3-031-15342-6
eBook Packages: Computer ScienceComputer Science (R0)