Abstract
In this paper, we present a cellular automata model for a two-level laser which includes a saturable absorber. We show that the model reproduces laser passive Q-switching, a behavior in which intense short pulses of laser radiation are produced. Depending on the concentration of the absorbent, the automaton model qualitatively reproduces two operating states of the laser: a stable state and another oscillatory or pulsed state.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)
Chusseau, L., Philippe, F., Disanto, F.: Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers. Opt. Express 22(5), 5312–5324 (2014)
Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Cellular automaton model for the simulation of laser dynamics. Phys. Rev. E 67(6), 66708 (2003)
Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Simulation of the dynamics of pulsed pumped lasers based on cellular automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 278–285. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1_29
Jiménez-Morales, F., Guisado, J.L., Guerra, J.M.: Simulating laser dynamics with cellular automata. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García-Medina, E. (eds.) Nonlinear Systems, Vol. 1. UCS, pp. 405–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66766-9_14
Keller, U., et al.: Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 2(3), 435–453 (1996)
Koechner, W.: Solid-State Laser Engineering, 3rd edn. Springer, Heidelberg (1992). https://doi.org/10.1007/0-387-29338-8
Kroc, J., Jiménez-Morales, F., Guisado, J.L., Lemos, M.C., Tkac, J.: Building efficient computational cellular automata models of complex systems: background, applications, results, software, and pathologies. Adv. Complex Syst. 22(5), 1950013 (2019)
Kurtner, F.X., der Au, J.A., Keller, U.: Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. Quant. Electron. 4(2), 159–168 (1998)
Marcuse, D.: Pulsing behavior of a three-level laser with saturable absorber. IEEE J. Quant. Electron. 29(8), 2390–2396 (1993)
Siegman, A.E.: Lasers. Unversity Science Books (1986)
Sloot, P.M., Hoekstra, A.G.: Modeling dynamic systems with cellular automata. In: Fishwick, P.A. (ed.) Handbook of Dynamic System Modeling, pp. (21) 1–6. Chapman & Hall/CRC (2007)
Zhang, L., Waters, R.F., Macdonald, K.F., Zheludev, N.I.: Cellular automata dynamics of nonlinear optical processes in a phase-change material. Appl. Phys. Rev. 8, 011404 (2021)
Acknowledgments
This research was financed by projects PGC2018-094952-B-I00 (INTRACER), PID2019-110455GB-I00 (Par-Hot), US-1381077 (CIUCAP-HSF) from FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación, and by project P20_01121 (FRAC) from the Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Junta de Andalucía).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiménez-Morales, F., Guisado-Lizar, JL., Guerra, J.M. (2022). A Cellular Automaton Model of a Laser with Saturable Absorber Reproducing Laser Passive Q-switching. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-14926-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14925-2
Online ISBN: 978-3-031-14926-9
eBook Packages: Computer ScienceComputer Science (R0)