[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lyapunov Profiles of Three-State Totalistic Cellular Automata

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2022)

Abstract

Inspired by the theory of continuous dynamical systems, Lyapunov exponents have been previously defined in the framework of cellular automata (CAs) in order to quantify a CA’s sensitive dependence on initial conditions, i.e. a CA’s sensitivity to a perturbation of an initial configuration. However, the application of these Lyapunov exponents is currently limited to two-state CAs, which limits their usefulness in the framework of CA-based models since these typically involve more than two states. This paper proposes an extension of the existing methodological framework to three-state CAs. Our method is illustrated for some interesting totalistic three-state rules, although it is generally applicable. Our proposed extension to the existing framework reveals some interesting features regarding CAs classified as class IV according to Wolfram’s classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baetens, J.M., Gravner, J.: Introducing Lyapunov profiles of cellular automata. J. Cell. Autom. 13, 267–286 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents in cellular automata. Phys. Lett. A 172(1), 34–38 (1992). https://doi.org/10.1016/0375-9601(92)90185-O, http://www.sciencedirect.com/science/article/pii/037596019290185O

  3. Bhattacharjee, K., Naskar, N., Roy, S., Das, S.: A survey of cellular automata: types, dynamics, non-uniformity and applications. Nat. Comput. 19(2), 433–461 (2018). https://doi.org/10.1007/s11047-018-9696-8

    Article  MathSciNet  Google Scholar 

  4. Courbage, M., Kaminski, B.: Space-time directional Lyapunov exponents for cellular automata. J. Stat. Phys. 124 (2006). https://doi.org/10.1007/s10955-006-9172-1

  5. Pfeifer, B., et al.: A cellular automaton framework for infectious disease spread simulation. Open Med. Inform. J. 2, 70–81 (2008)

    Article  Google Scholar 

  6. Reyes, L., Laroze, D.: Cellular automata for excitable media on a complex network: the effect of network disorder in the collective dynamics. Physica A 588, 126552 (2021). https://doi.org/10.1016/j.physa.2021.126552

    Article  Google Scholar 

  7. Shereshevsky, M.A.: Lyapunov exponents for one-dimensional cellular automata. J. Nonlinear Sci. 2, 1–8 (1992). https://doi.org/10.1007/BF02429850

  8. Tisseur, P.: Cellular automata and Lyapunov exponents. Nonlinearity 13(5), 1547–1560 (2000). https://doi.org/10.1088/0951-7715/13/5/308

    Article  MathSciNet  MATH  Google Scholar 

  9. Vallejo, J., Sanjuán, M.: Predictability of Chaotic Dynamics: A Finite-time Lyapunov Exponents Approach. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28630-9

  10. Vichniac, G.: Boolean derivatives on cellular automata. Physica D 45(1–3), 63–74 (1990)

    Article  MathSciNet  Google Scholar 

  11. Vispoel, M., Daly, A.J., Baetens, J.M.: Progress, gaps and obstacles in the classification of cellular automata. Physica D 432, 133074 (2022). https://doi.org/10.1016/j.physd.2021.133074

    Article  MathSciNet  MATH  Google Scholar 

  12. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 37 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Wuensche, A.: Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4, 47–66 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Vispoel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vispoel, M., Daly, A.J., Baetens, J.M. (2022). Lyapunov Profiles of Three-State Totalistic Cellular Automata. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14926-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14925-2

  • Online ISBN: 978-3-031-14926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics