[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Increasing the Diversity of Benchmark Function Sets Through Affine Recombination

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

The Black Box Optimization Benchmarking (BBOB) set provides a diverse problem set for continuous optimization benchmarking. At its core lie 24 functions, which are randomly transformed to generate an infinite set of instances. We think this has two benefits: it discourages over adaptation to the benchmark by generating some diversity and it encourages algorithm designs that are invariant to transformations. Using Exploratory Landscape Analysis (ELA) features, one can show that the BBOB functions are not representative of all possible functions. Muñoz and Smith-Miles [15] show that one can generate space-filling test functions using genetic programming. Here we propose a different approach that, while not generating a space-filling function set, is much cheaper. We take affine recombinations of pairs of BBOB functions and use these as additional benchmark functions. This has the advantage that it is trivial to implement, and many of the properties of the resulting functions can easily be derived. Using dimensionality reduction techniques, we show that these new functions “fill the gaps” between the original benchmark functions in the ELA feature space. We therefore believe this is a useful tool since it allows one to span the desired ELA-region from a few well-chosen prototype functions.

Supported by German Federal Ministry of Education and Research in the funding program Forschung an Fachhochschulen under the grant number 13FH007IB6 and German Federal Ministry for Economic Affairs and Climate Action in the funding program Zentrales Innovationsprogramm Mittelstand under the grant number KK5074401BM0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dietrich, K., Mersmann, O.: Changing function landscape of two dimensional recombinations (2022). https://doi.org/10.5281/zenodo.6456367

  2. Dietrich, K., Mersmann, O.: Exploratory Landscape Analysis Feature Data of Recombinations and noiseless BBOB Instances, pp. 1–15 (2022). https://doi.org/10.5281/zenodo.6456361

  3. Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: A benchmarking and profiling tool for iterative optimization heuristics arxiv.org/abs/1810.05281, October 2018

  4. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Optim. Methods Softw. 36(1), 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

    Article  MathSciNet  MATH  Google Scholar 

  5. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Research Report RR-6829, Inria (2009). https://hal.inria.fr/inria-00362633

  6. Hooker, J.: Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33–42 (1995). https://doi.org/10.1007/BF02430364

    Article  MATH  Google Scholar 

  7. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: GECCO 2015 - Proceedings of the 2015 Genetic and Evolutionary Computation Conference, pp. 265–272 (2015). https://doi.org/10.1145/2739480.2754642

  8. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of continuous and constrained optimization problems using the R-package Flacco. In: Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.) Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25147-5_7

    Chapter  Google Scholar 

  9. Liao, T., Molina, D., Stützle, T.: Performance evaluation of automatically tuned continuous optimizers on different benchmark sets. Appl. Soft Comput. J. 27, 490–503 (2015). https://doi.org/10.1016/J.ASOC.2014.11.006

    Article  Google Scholar 

  10. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: GECCO 2006 - Genetic and Evolutionary Computation Conference, vol. 1, pp. 477–484 (2006). https://doi.org/10.1145/1143997.1144085

  11. Marín, J.: How landscape ruggedness influences the performance of real-coded algorithms: a comparative study. Soft Comput. 16, 683–698 (2012). https://doi.org/10.1007/s00500-011-0781-5

    Article  Google Scholar 

  12. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 829–836 (2011). https://doi.org/10.1145/2001576.2001690

  13. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. 19, 74–87 (2015). https://doi.org/10.1109/TEVC.2014.2302006

    Article  Google Scholar 

  14. Muñoz, M.A., Smith-Miles, K.: Performance analysis of continuous black-box optimization algorithms via footprints in instance space. Evol. Comput. 25, 529–554 (2017). https://doi.org/10.1162/EVCO_a_00194

    Article  Google Scholar 

  15. Muñoz, M.A., Smith-Miles, K.: Generating new space-filling test instances for continuous black-box optimization. Evol. Comput. 28, 379–404 (2020). https://doi.org/10.1162/EVCO_A_00262

    Article  Google Scholar 

  16. Owen, A.B.: Scrambling sobol’ and Niederreiter-Xing points. J. Complex. 14(4), 466–489 (1998). https://doi.org/10.1006/jcom.1998.0487

    Article  MathSciNet  MATH  Google Scholar 

  17. Renau, Q., Doerr, C., Dreo, J., Doerr, B.: Exploratory landscape analysis is strongly sensitive to the sampling strategy. In: Bäck, T., et al. (eds.) PPSN 2020, Part II. LNCS, vol. 12270, pp. 139–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_10

    Chapter  Google Scholar 

  18. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Towards explainable exploratory landscape analysis: extreme feature selection for classifying BBOB functions. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 17–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_2

    Chapter  Google Scholar 

  19. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003). https://doi.org/10.1007/978-1-4757-3799-8

    Book  MATH  Google Scholar 

  20. Seo, D.I., Moon, B.R.: An information-theoretic analysis on the interactions of variables in combinatorial optimization problems. Evol. Comput. 15, 169–198 (2007). https://doi.org/10.1162/EVCO.2007.15.2.169

    Article  Google Scholar 

  21. Sobol’, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112 (1967). https://doi.org/10.1016/0041-5553(67)90144-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Škvorc, U., Eftimov, T., Korošec, P.: Transfer learning analysis of multi-class classification for landscape-aware algorithm selection. Mathematics 10(3) (2022). https://doi.org/10.3390/math10030432

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dietrich, K., Mersmann, O. (2022). Increasing the Diversity of Benchmark Function Sets Through Affine Recombination. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics