[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2022)

Abstract

Recently it was shown, using the typical mutation mechanism that is used in evolutionary algorithms, that monotone conjunctions are provably evolvable under a specific set of Bernoulli \((p)^n\) distributions. A natural question is whether this mutation mechanism allows convergence under other distributions as well. Our experiments indicate that the answer to this question is affirmative and, at the very least, this mechanism converges under Bernoulli \((p)^n\) distributions outside of the known proved regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A literal is a Boolean variable or its negation.

  2. 2.

    The function c is also called ideal function, as it represents the ideal behavior in a certain environment.

  3. 3.

    Source code available at: https://gitlab.com/marina_pantia/evolvability_code.

References

  1. Diochnos, D.I.: On the evolution of monotone conjunctions: drilling for best approximations. In: Ortner, R., Simon, H.U., Zilles, S. (eds.) ALT 2016. LNCS (LNAI), vol. 9925, pp. 98–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46379-7_7

    Chapter  Google Scholar 

  2. Diochnos, D.I.: On the evolvability of monotone conjunctions with an evolutionary mutation mechanism. J. Artif. Intell. Res. 70, 891–921 (2021)

    Article  MathSciNet  Google Scholar 

  3. Diochnos, D.I., Turán, G.: On evolvability: the swapping algorithm, product distributions, and covariance. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 74–88. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_7

    Chapter  MATH  Google Scholar 

  4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  5. Feldman, V.: Evolvability from learning algorithms. In: STOC, pp. 619–628 (2008)

    Google Scholar 

  6. Kalkreuth, R., Droschinsky, A.: On the time complexity of simple cartesian genetic programming. In: IJCCI, pp. 172–179. ScitePress (2019)

    Google Scholar 

  7. Kanade, V.: Evolution with recombination. In: FOCS, pp. 837–846 (2011)

    Google Scholar 

  8. Koza, J.R.: Genetic Programming - On the Programming of Computers by Means of Natural Selection. Complex Adaptive Systems. MIT Press, Cambridge (1993)

    Google Scholar 

  9. Lissovoi, A., Oliveto, P.S.: On the time and space complexity of genetic programming for evolving Boolean conjunctions. J. Artif. Intell. Res. 66, 655–689 (2019)

    Article  MathSciNet  Google Scholar 

  10. Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic programming for evolving Boolean functions. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 99–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_7

    Chapter  Google Scholar 

  11. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35(4), 965–984 (1988)

    Article  MathSciNet  Google Scholar 

  12. Reyzin, L.: Statistical Queries and Statistical Algorithms: Foundations and Applications. CoRR abs/2004.00557 (2020)

    Google Scholar 

  13. Ros, J.P.: Learning Boolean functions with genetic algorithms: a PAC analysis. In: FOGA, pp. 257–275 (1992)

    Google Scholar 

  14. Snir, S., Yohay, B.: Prokaryotic evolutionary mechanisms accelerate learning. Discrete Appl. Math. 258, 222–234 (2019)

    Article  MathSciNet  Google Scholar 

  15. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  Google Scholar 

  16. Valiant, L.G.: Evolvability. J. ACM 56(1), 3:1-3:21 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantia-Marina Alchirch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alchirch, PM., Diochnos, D.I., Papakonstantinopoulou, K. (2022). Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence. In: Medvet, E., Pappa, G., Xue, B. (eds) Genetic Programming. EuroGP 2022. Lecture Notes in Computer Science, vol 13223. Springer, Cham. https://doi.org/10.1007/978-3-031-02056-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02056-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02055-1

  • Online ISBN: 978-3-031-02056-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics