[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cooperative Co-evolution and Adaptive Team Composition for a Multi-rover Resource Allocation Problem

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13223))

Included in the following conference series:

  • 862 Accesses

Abstract

In this paper, we are interested in ad hoc autonomous agent team composition using cooperative co-evolutionary algorithms (CCEA). In order to accurately capture the individual contribution of team agents, we propose to limit the number of agents which are updated in-between team evaluations. However, this raises two important problems with respect to (1) the cost of accurately estimating the marginal contribution of agents with respect to the team learning speed and (2) completing tasks where improving team performance requires multiple agents to update their policies in a synchronized manner. We introduce a CCEA algorithm that is capable of learning how to update just the right amount of agents’ policies for the task at hand. We use a variation of the El Farol Bar problem, formulated as a multi-robot resource selection problem, to provide an experimental validation of the algorithms proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arthur, W.B.: Inductive reasoning and bounded rationality. Am. Econ. Rev. 84(2), 406–411 (1994)

    Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

    Article  MathSciNet  Google Scholar 

  3. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

    Article  MathSciNet  MATH  Google Scholar 

  4. De Jong, K.A.: Evolutionary computation: a unified approach. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 185–199 (2016)

    Google Scholar 

  5. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, vol. 53. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

    Book  MATH  Google Scholar 

  6. Funes, P., Pujals, E.: Intransitivity revisited coevolutionary dynamics of numbers games. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 515–521. Association for Computing Machinery, New York (2005)

    Google Scholar 

  7. Gomes, J., Mariano, P., Christensen, A.L.: Novelty-driven cooperative coevolution. Evol. Comput. 25(2), 275–307 (2017)

    Article  Google Scholar 

  8. Gomes, J., Mariano, P., Christensen, A.L.: Dynamic team heterogeneity in cooperative coevolutionary algorithms. IEEE Trans. Evol. Comput. 22(6), 934–948 (2018)

    Article  Google Scholar 

  9. Gomes, J., Mariano, P., Christensen, A.L.: Challenges in cooperative coevolution of physically heterogeneous robot teams. Nat. Comput. 18(1), 29–46 (2016). https://doi.org/10.1007/s11047-016-9582-1

    Article  MathSciNet  Google Scholar 

  10. Ma, X., et al.: A survey on cooperative co-evolutionary algorithms. IEEE Trans. Evol. Comput. 23(3), 421–441 (2019)

    Article  Google Scholar 

  11. Noë, R., Hammerstein, P.: Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav. Ecol. Sociobiol. 35(1), 1–11 (1994). https://doi.org/10.1007/BF00167053

    Article  Google Scholar 

  12. Panait, L.: Theoretical convergence guarantees for cooperative coevolutionary algorithms. Evol. Comput. 18(4), 581–615 (2010)

    Article  Google Scholar 

  13. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  14. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8, 1–29 (2000)

    Article  Google Scholar 

  15. Rahmattalabi, A., Chung, J.J., Colby, M., Tumer, K.: D++: structural credit assignment in tightly coupled multiagent domains. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4424–4429. IEEE (2016)

    Google Scholar 

  16. Rockefeller, G., Khadka, S., Tumer, K.: Multi-level fitness critics for cooperative coevolution. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), pp. 1143–1151, 9–13 May 2020

    Google Scholar 

  17. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of Games II. Annals of Mathematics Studies, vol. 28, pp. 307–317 (1953)

    Google Scholar 

  18. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  19. Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S.: Ad hoc autonomous agent teams: collaboration without pre-coordination. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 1504–1509. AAAI Press (2010)

    Google Scholar 

  20. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  21. Tumer, K., Agogino, A.K., Wolpert, D.H.: Learning sequences of actions in collectives of autonomous agents. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 378–385 (2002)

    Google Scholar 

  22. West, S.A., Griffin, A.S., Gardner, A.: Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20(2), 415–32 (2007)

    Article  Google Scholar 

  23. Wolpert, D.H., Tumer, K.: Optimal payoff functions for members of collectives. Adv. Complex Syst. 4(2/3), 265–279 (2001)

    Article  Google Scholar 

  24. Wolpert, D.H., Tumer, K.: An introduction to collective intelligence. Technical report, NASA (2008)

    Google Scholar 

  25. Zerbel, N., Tumer, K.: The power of suggestion. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), pp. 1602–1610, 9–13 May 2020

    Google Scholar 

Download references

Acknowledgements

This work is funded by ANR grant ANR-18-CE33-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Fontbonne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fontbonne, N., Maudet, N., Bredeche, N. (2022). Cooperative Co-evolution and Adaptive Team Composition for a Multi-rover Resource Allocation Problem. In: Medvet, E., Pappa, G., Xue, B. (eds) Genetic Programming. EuroGP 2022. Lecture Notes in Computer Science, vol 13223. Springer, Cham. https://doi.org/10.1007/978-3-031-02056-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02056-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02055-1

  • Online ISBN: 978-3-031-02056-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics