Overview
Part of the book series: Synthesis Lectures on Artificial Intelligence and Machine Learning (SLAIML)
Access this book
Tax calculation will be finalised at checkout
Other ways to access
About this book
How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private?
Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.
Similar content being viewed by others
Table of contents (11 chapters)
Authors and Affiliations
About the authors
Yong Cheng is currently a Senior Researcher in the AI Department of WeBank, Shenzhen, China. Previously, he had worked in Huawei Technologies Co., Ltd. (Shenzhen) as a Senior Engineer, and in Bell Labs Germany as a Senior Researcher. Yong had also worked as a Researcher in the Huawei-HKUST Innovation Laboratory, Hong Kong. His research interests and expertise mainly include Deep Learning, Federated Learning, Computer Vision and OCR, Mathematical Optimization and Algorithms, Distributed Computing, as well as Mixed-Integer Programming. He has published more than 20 journal and conference papers and filed more than 40 patents. Yong received the B.Eng. (1st class honors), MPhil, and Ph.D. (1st class honors) degrees from Zhejiang University (ZJU), Hangzhou, PR China, the Hong Kong University of Science and Technology (HKUST), Hong Kong, and Technische Universitat Darmstadt (TU Darmstadt), Darmstadt, Germany, in 2006, 2010, and 2013, respectively. He received the best Ph.D. thesis award of TU Darmstadt in 2014, and the best B.Eng. thesis award of ZJU in 2006. Yong gave a tutorial on ""Mixed-Integer Conic Programming"" at ICASSP'15, and he was the PC Member of FML'19 (in conjunction with IJCAI'19).
Yan Kang is a Senior Researcher in the AI department of Webank in Shenzhen, China. His work is focusing on the research and implementation of privacy-preserving machine learning and federated transfer learning techniques. He received M.S. and Ph.D. degrees in Computer Science from the University of Maryland, Baltimore County, USA. His Ph.D. work was awarded a doctoral fellowship and centered around machine learning and semantic web for heterogeneous data integration. During his graduate work,he participated in multiple projects collaborating with the National Institute of Standards and Technology (NIST) and the National Science Foundation (NSF) for designing and developing ontology integration systems. He also has adequate experiences in commercial software projects. Before joining WeBank, he had been working for Stardog Union Inc. and Cerner Corporation for more than four years on system design and implementation.
Tianjian Chen is the Deputy General Manager of the AI Department of WeBank, China. He is now responsible for building the Banking Intelligence Ecosystem based on Federated Learning Technology. Before joining WeBank, he was the Chief Architect of Baidu Finance, Principal Architect of Baidu. Tianjian has over 12 years of experience in large-scale distributed system design and enabling technology innovations in various application fields, such as web search engine, peer-to-peer storage, genomics, recommender system, digital banking, and machine learning.
Han Yu is a Nanyang Assistant Professor (NAP) in the School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), Singapore. Between 2015 and 2018, he held the prestigious Lee Kuan Yew Post-Doctoral Fellowship (LKY PDF). Before joining NTU, he worked as an Embedded Software Engineer at Hewlett-Packard (HP) PteLtd, Singapore. He obtained his Ph.D. in Computer Science from NTU in 2014. His research focuses on online convex optimization, ethical AI, federated learning, and their applications in complex collaborative systems such as crowdsourcing. He has published over 120 research papers leading international conferences and journals and won multiple research awards.
Bibliographic Information
Book Title: Federated Learning
Authors: Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, Han Yu
Series Title: Synthesis Lectures on Artificial Intelligence and Machine Learning
DOI: https://doi.org/10.1007/978-3-031-01585-4
Publisher: Springer Cham
eBook Packages: Synthesis Collection of Technology (R0), eBColl Synthesis Collection 9
Copyright Information: Springer Nature Switzerland AG 2020
Softcover ISBN: 978-3-031-00457-5Published: 19 December 2019
eBook ISBN: 978-3-031-01585-4Published: 01 June 2022
Series ISSN: 1939-4608
Series E-ISSN: 1939-4616
Edition Number: 1
Number of Pages: XVII, 189
Topics: Artificial Intelligence, Machine Learning, Mathematical Models of Cognitive Processes and Neural Networks