Abstract
Entity alignment aims to construct a complete knowledge graph (KG) by matching the same entities in multi-source KGs. Existing methods mainly focused on the static KG, which assumes that the relationship between entities is permanent. However, almost every KG will evolve over time in practical applications, resulting in the need for entity alignment between such temporal knowledge graphs (TKGs). In this paper, we propose a novel entity alignment framework suitable for TKGs, namely Tem-EA. To incorporate temporal information, we use recurrent neural networks to learn temporal sequence representations. Furthermore, we use graph convolutional network (GCN) and translation-based embedding model to fully learn structural information representation and attribute information representation. Based on these two representations, the entity similarity is calculated separately and combined using linear weighting. To improve the accuracy of entity alignment, we also propose a concept of nearest neighbor matching, which matches the most similar entity pair according to distance matrix. Experiments show that our proposed model has a significant improvement compared to previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asamoah, C., Tao, L., Gai, K., Jiang, N.: Powering filtration process of cyber security ecosystem using knowledge graph. In: CSCloud, pp. 240–246 (2016)
Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: IJCAI, pp. 1511–1517 (2017)
Chen, M., Tian, Y.N., Chang, K., Skiena, S., Zaniolo, C.: Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In: IJCAI, pp. 3998–4004 (2018)
Cao, Y., Wang, X., He, X., Hu, Z., Chua, T. S.: Unifying knowledge graph learning and recommendation: Towards a better understanding of user preferences. In: WWW, pp. 151–161 (2019)
Cao, Y., Liu, Z., Li, C., Liu, Z., Li, J., Chua, T.S.: Multi-channel graph neural network for entity alignment. In ACL, pp. 1452–1461 (2019)
Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: EMNLP, pp. 2001–2011 (2018)
Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_4
Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: AAAI, pp. 3988–3995 (2020)
García-Durán, A., Dumančić S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP, pp. 4816–4821 (2018)
Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs. In: EMNLP (2020)
Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Champin, pp. 1771–1776 (2018)
Liao, S., Liang, S., Meng, Z., Zhang, Q.: Learning dynamic embeddings for temporal knowledge graphs. In: WSDM, pp. 535–543 (2021)
Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: A knowledge base from multilingual wikipedias. In: CIDR (2013)
Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)
Sun, Z., Wang, C., Hu, W., Chen, M., Dai, J., Zhang, W., Qu, Y.: Knowledge graph alignment network with gated multi-hop neighborhood aggregation. In: AAAI, pp. 222–229 (2020)
Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: IJCAI, pp. 4396–4402 (2018)
Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_37
Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)
Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. In: ICML, pp. 3462–3471 (2017)
Trsedya, B.D., Qi, J., Rui, Z.: Entity alignment between knowledge graphs using attribute embeddings. In: AAAI, pp. 297–304 (2019)
Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: EMNLP, pp. 349–357 (2018)
Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Jointly learning entity and relation representations for entity alignment. In: EMNLP (2019)
Wu, Y., Liu, X., Feng, Y., Wang, Z., Yan, R., Zhao, D.: Relation-aware entity alignment for heterogeneous knowledge graphs. In: IJCAI (2019)
Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H. S., Lehmann, J.: Temporal knowledge graph embedding model based on additive time series decomposition. arXiv preprint arXiv:1911.07893 (2019)
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)
Yan, Z., Peng, R., Wang, Y., Li, W.: CTEA: Context and topic enhanced entity alignment for knowledge graphs. In: Neurocomputing, pp. 419–431 (2020)
Yih, W.T., Chang, M.W., He, X., Gao J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: ACL, pp. 1321–1331 (2015)
Zhu, Y., Liu, H., Wu, Z., Du, Y.: Relation-aware neighborhood matching model for entity alignment. In: AAAI, pp. 4749–4756 (2021)
Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NIPS, pp. 2731–2741 (2019)
Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge embeddings. In: IJCAI, pp. 4258–4264 (2017)
Zhang, Q., Sun, Z., Hu, W., Chen, M., Guo, L., Qu, Y.: Multi-view knowledge graph embedding for entity alignment. In: IJCAI, pp. 5429–5435 (2019)
Zhang, Z., Bu, J., Li, Z., Yao, C., Wang, C., Wu, J.: TigeCMN: On exploration of temporal interaction graph embedding via coupled memory neural networks. In: Neural Networks, pp. 13–26 (2021)
Acknowledgment
The work was supported by the National Natural Science Foundation of China (61402087), the Natural Science Foundation of Hebei Province (F2019501030), the Key Project of Scientific Research Funds in Colleges and Universities of Hebei Education Department (ZD2020402), the Fundamental Research Funds for the Central Universities (N2023019), and in part by the Program for 333 Talents in Hebei Province (A202001066).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, X., Bai, L., Liu, R., Zhang, H. (2022). Temporal Knowledge Graph Entity Alignment via Representation Learning. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13246. Springer, Cham. https://doi.org/10.1007/978-3-031-00126-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-00126-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-00125-3
Online ISBN: 978-3-031-00126-0
eBook Packages: Computer ScienceComputer Science (R0)