[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Temporal Knowledge Graph Entity Alignment via Representation Learning

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13246))

Included in the following conference series:

Abstract

Entity alignment aims to construct a complete knowledge graph (KG) by matching the same entities in multi-source KGs. Existing methods mainly focused on the static KG, which assumes that the relationship between entities is permanent. However, almost every KG will evolve over time in practical applications, resulting in the need for entity alignment between such temporal knowledge graphs (TKGs). In this paper, we propose a novel entity alignment framework suitable for TKGs, namely Tem-EA. To incorporate temporal information, we use recurrent neural networks to learn temporal sequence representations. Furthermore, we use graph convolutional network (GCN) and translation-based embedding model to fully learn structural information representation and attribute information representation. Based on these two representations, the entity similarity is calculated separately and combined using linear weighting. To improve the accuracy of entity alignment, we also propose a concept of nearest neighbor matching, which matches the most similar entity pair according to distance matrix. Experiments show that our proposed model has a significant improvement compared to previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asamoah, C., Tao, L., Gai, K., Jiang, N.: Powering filtration process of cyber security ecosystem using knowledge graph. In: CSCloud, pp. 240–246 (2016)

    Google Scholar 

  2. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  3. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: IJCAI, pp. 1511–1517 (2017)

    Google Scholar 

  4. Chen, M., Tian, Y.N., Chang, K., Skiena, S., Zaniolo, C.: Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In: IJCAI, pp. 3998–4004 (2018)

    Google Scholar 

  5. Cao, Y., Wang, X., He, X., Hu, Z., Chua, T. S.: Unifying knowledge graph learning and recommendation: Towards a better understanding of user preferences. In: WWW, pp. 151–161 (2019)

    Google Scholar 

  6. Cao, Y., Liu, Z., Li, C., Liu, Z., Li, J., Chua, T.S.: Multi-channel graph neural network for entity alignment. In ACL, pp. 1452–1461 (2019)

    Google Scholar 

  7. Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: EMNLP, pp. 2001–2011 (2018)

    Google Scholar 

  8. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_4

    Chapter  Google Scholar 

  9. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: AAAI, pp. 3988–3995 (2020)

    Google Scholar 

  10. García-Durán, A., Dumančić S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP, pp. 4816–4821 (2018)

    Google Scholar 

  11. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs. In: EMNLP (2020)

    Google Scholar 

  12. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Champin, pp. 1771–1776 (2018)

    Google Scholar 

  13. Liao, S., Liang, S., Meng, Z., Zhang, Q.: Learning dynamic embeddings for temporal knowledge graphs. In: WSDM, pp. 535–543 (2021)

    Google Scholar 

  14. Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: A knowledge base from multilingual wikipedias. In: CIDR (2013)

    Google Scholar 

  15. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  16. Sun, Z., Wang, C., Hu, W., Chen, M., Dai, J., Zhang, W., Qu, Y.: Knowledge graph alignment network with gated multi-hop neighborhood aggregation. In: AAAI, pp. 222–229 (2020)

    Google Scholar 

  17. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: IJCAI, pp. 4396–4402 (2018)

    Google Scholar 

  18. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_37

    Chapter  Google Scholar 

  19. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  20. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. In: ICML, pp. 3462–3471 (2017)

    Google Scholar 

  21. Trsedya, B.D., Qi, J., Rui, Z.: Entity alignment between knowledge graphs using attribute embeddings. In: AAAI, pp. 297–304 (2019)

    Google Scholar 

  22. Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: EMNLP, pp. 349–357 (2018)

    Google Scholar 

  23. Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Jointly learning entity and relation representations for entity alignment. In: EMNLP (2019)

    Google Scholar 

  24. Wu, Y., Liu, X., Feng, Y., Wang, Z., Yan, R., Zhao, D.: Relation-aware entity alignment for heterogeneous knowledge graphs. In: IJCAI (2019)

    Google Scholar 

  25. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H. S., Lehmann, J.: Temporal knowledge graph embedding model based on additive time series decomposition. arXiv preprint arXiv:1911.07893 (2019)

  26. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  27. Yan, Z., Peng, R., Wang, Y., Li, W.: CTEA: Context and topic enhanced entity alignment for knowledge graphs. In: Neurocomputing, pp. 419–431 (2020)

    Google Scholar 

  28. Yih, W.T., Chang, M.W., He, X., Gao J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: ACL, pp. 1321–1331 (2015)

    Google Scholar 

  29. Zhu, Y., Liu, H., Wu, Z., Du, Y.: Relation-aware neighborhood matching model for entity alignment. In: AAAI, pp. 4749–4756 (2021)

    Google Scholar 

  30. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NIPS, pp. 2731–2741 (2019)

    Google Scholar 

  31. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge embeddings. In: IJCAI, pp. 4258–4264 (2017)

    Google Scholar 

  32. Zhang, Q., Sun, Z., Hu, W., Chen, M., Guo, L., Qu, Y.: Multi-view knowledge graph embedding for entity alignment. In: IJCAI, pp. 5429–5435 (2019)

    Google Scholar 

  33. Zhang, Z., Bu, J., Li, Z., Yao, C., Wang, C., Wu, J.: TigeCMN: On exploration of temporal interaction graph embedding via coupled memory neural networks. In: Neural Networks, pp. 13–26 (2021)

    Google Scholar 

Download references

Acknowledgment

The work was supported by the National Natural Science Foundation of China (61402087), the Natural Science Foundation of Hebei Province (F2019501030), the Key Project of Scientific Research Funds in Colleges and Universities of Hebei Education Department (ZD2020402), the Fundamental Research Funds for the Central Universities (N2023019), and in part by the Program for 333 Talents in Hebei Province (A202001066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyi Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X., Bai, L., Liu, R., Zhang, H. (2022). Temporal Knowledge Graph Entity Alignment via Representation Learning. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13246. Springer, Cham. https://doi.org/10.1007/978-3-031-00126-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00126-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00125-3

  • Online ISBN: 978-3-031-00126-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics