[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Incremental Extreme Learning Machine Prediction Method Based on Attenuated Regularization Term

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13345))

Included in the following conference series:

  • 655 Accesses

Abstract

As a powerful tool for regression prediction, Incremental Extreme Learning Machine (I-ELM) has good nonlinear approximation ability, but the original model has the problem that the uneven output weights distribution affects the generalization ability of the model. This paper proposes an Incremental Extreme Learning Machine method based on Attenuated Regularization Term (ARI-ELM). The proposed ARI-ELM adds attenuation regularization term in the iterative process of output weights, reduces the output weights of the hidden node in the early stage of the iteration and ensuring that the new nodes after multiple iterations are not affected by the large regularization coefficient. Therefore, the overall output weights of the network reach a relatively small and evenly distributed state, which would reduce the complexity of the model. This paper also proves that the model still has convergence performance after adding the attenuated regularization term. Simulation results on the benchmark data set demonstrate that our proposed approach has better generalization performance than other incremental extreme learning machine variants. In addition, this paper applies the algorithm to specific weight prediction scene of intelligent manufacturing dynamic scheduling, and also gets good results.

This paper was supported by National Key Research and Development Program of China under Grant 2018YFB1003700 and National Natural Science Foundation of China under Grant 61906015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, J.W., Lin, Z.P.: Extreme learning machines on high dimensional and large data applications: a survey. Math. Probl. Eng. 2015(PT.12), 103796.1–103796.13 (2015)

    Google Scholar 

  2. Feng, G.R., Huang, G.B., Lin, Q.P., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1357 (2009)

    Article  Google Scholar 

  3. Geng, Z., Dong, J., Chen, J., Han, Y.: A new self-organizing extreme learning machine soft sensor model and its applications in complicated chemical processes. Eng. Appl. Artif. Intell. 62, 38–50 (2017)

    Article  Google Scholar 

  4. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  5. Huang, G.B., Chen, L., Siew, C.K.: Convex incremental extreme learning machine. Neurocomputing 70(16–18), 3056–3062 (2007)

    Article  Google Scholar 

  6. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: International Joint Conference on Neural Networks, pp. 985–990. IEEE (2005)

    Google Scholar 

  7. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1/3), 489–501 (2006)

    Article  Google Scholar 

  8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Real-time learning capability of neural networks. IEEE Trans. Neural Netw. 17(4), 863 (2006)

    Article  Google Scholar 

  9. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17, 1411–23 (2006)

    Article  Google Scholar 

  10. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  Google Scholar 

  11. Tang, X.L., Han, M.: Partial Lanczos extreme learning machine for single-output regression problems. Neurocomputing 72(13–15), 3066–3076 (2009)

    Article  Google Scholar 

  12. Tang, Y.G., Li, Z.H., Guan, X.P.: Identification of nonlinear system using extreme learning machine based Hammerstein model. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3171–3183 (2014)

    Article  MathSciNet  Google Scholar 

  13. Tian, Z.D., Li, S.J., Wang, Y.H., Wang, X.D.: Network traffic prediction method based on improved ABC algorithm optimized EM-ELM. J. China Univ. Posts Telecommun. 25(03), 37–48 (2018)

    Article  Google Scholar 

  14. Wang, D., Wang, P., Ji, Y.: An oscillation bound of the generalization performance of extreme learning machine and corresponding analysis. Neurocomputing 151, 883–890 (2015)

    Article  Google Scholar 

  15. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1998)

    Article  Google Scholar 

  16. Zhang, L., Zhang, D.: Evolutionary cost-sensitive extreme learning machine. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 3045–3060 (2017)

    Article  MathSciNet  Google Scholar 

  17. Zhongda, T., Shujiang, L., Yanhong, W., Yi, S.: A prediction method based on wavelet transform and multiple models fusion for chaotic time series. Chaos, Solitons Fractals 98, 158–172 (2017)

    Article  MathSciNet  Google Scholar 

  18. Zhu, W., Huang, W., Lin, Z., Yang, Y., Huang, S., Zhou, J.: Data and feature mixed ensemble based extreme learning machine for medical object detection and segmentation. Multimed. Tools Appl. 75(5), 2815–2837 (2015). https://doi.org/10.1007/s11042-015-2582-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Li, Y., Zou, W., Xia, Y. (2022). An Incremental Extreme Learning Machine Prediction Method Based on Attenuated Regularization Term. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13345. Springer, Cham. https://doi.org/10.1007/978-3-031-09726-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09726-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09725-6

  • Online ISBN: 978-3-031-09726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics