[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A General Framework for Intelligent Optimization Algorithms Based on Multilevel Evolutions

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13344))

Included in the following conference series:

  • 886 Accesses

Abstract

Intelligent optimization is a kind of global optimization algorithms based on simulating biological intelligent behaviors such as evolution and foraging. Currently, there are numerous intelligent optimization algorithms have been proposed based on a large mount of animals’ or plants’ behaviors. This phenomenon shows the prosperity of this field, but bring issues about these algorithms’ analysis and applications. We believe an extensive development stage has passed in the field of intelligent optimization, and more theoretical analysis and deep understanding about these algorithms become favorite. In this paper, we try to build a general framework for all population-based global optimization algorithms. This framework employs the idea of multilevel evolution, and therefore it can include not only the traditional bio-inspired evolution algorithms which often only evolute in a single level of search space, but also those population-based algorithms adopt data-driven strategies or cultural evolutions. By the help of the proposed framework, we can classify all population-based global optimization algorithms into three types, and improve the traditional algorithms. In this paper, this framework is then applied to the popular particle swarm optimization, and a modified particle swarm optimization with three-level of evolutions is proposed. Numerical results show that the modified algorithm improves the original one significantly.

Supported by Guangdong Universities’ Special Projects in Key Fields of Natural Science under Grant 2019KZDZX1005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bayraktar, Z., Komurcu, M., Werner, D.H.: Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. In: 2010 IEEE Antennas and Propagation Society International Symposium, pp. 1–4. IEEE (2010)

    Google Scholar 

  2. Colorni, A., Dorigo, M., Maniezzo, V., et al.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life, vol. 142, pp. 134–142 (1991)

    Google Scholar 

  3. Hedar, A.R.: Test functions for unconstrained global optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

  4. Holland, J.H.: Adaptation in natural and artificial systems : an introductory analysis with applications to biology (1992)

    Google Scholar 

  5. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary optimization: an overview and case studies. IEEE Trans. Evol. Comput. 23(3), 442–458 (2018)

    Article  Google Scholar 

  6. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  9. Liu, B., Wang, L., Liu, Y., Wang, S.: A unified framework for population-based metaheuristics. Ann. Oper. Res. 186(1), 231–262 (2011)

    Article  Google Scholar 

  10. Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust direct algorithm for global optimization problems. J. Global Optim. 62(2), 205–227 (2015)

    Article  MathSciNet  Google Scholar 

  11. Moré, J.J., Wild, S.M.: Benchmarking derivative - free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  MathSciNet  Google Scholar 

  12. Moscato, P., Norman, M.G.: A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. Parallel Comput. Transput. Appl. 1, 177–186 (1992)

    Google Scholar 

  13. Pan, X., Liu, f., Jiao, L.: Multiobjective social evolutionary algorithm based on multi-agent. J. Softw. 20, 1703–1713 (2009)

    Google Scholar 

  14. Reynolds, R.G.: An introduction to cultural algorithms 24, 131–139 (1994)

    Google Scholar 

  15. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21515-5_36

    Chapter  Google Scholar 

  16. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  17. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  18. Wu, K., Wang, C., Liu, J.: Evolutionary multitasking multilayer network reconstruction. IEEE Trans. Cybern. (2021, online). https://doi.org/10.1109/TCYB.2021.3090769

  19. Yan, Y., Zhou, Q., Cheng, S., Liu, Q., Li, Y.: Bilevel-search particle swarm optimization for computationally expensive optimization problems. Soft. Comput. 25(22), 14357–14374 (2021). https://doi.org/10.1007/s00500-021-06169-3

    Article  Google Scholar 

  20. Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 25(4), 651–665 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This paper is supported by the Guangdong Universities’ Special Projects in Key Fields of Natural Science under Grant 2019KZDZX1005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunfeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Chen, C., Lun, Z., Ye, Z., Liu, Q. (2022). A General Framework for Intelligent Optimization Algorithms Based on Multilevel Evolutions. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13344. Springer, Cham. https://doi.org/10.1007/978-3-031-09677-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09677-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09676-1

  • Online ISBN: 978-3-031-09677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics