Abstract
Noninvasive monitoring of human vital parameters is a widely studied topic. The scientists and engineers create many devices with telemedicine applications. Also in everyday functioning people use gadgets that contain noninvasive measurements (e.g. heart rate measurements in a smart watch). In addition to medical diagnostics, they are also used to monitor sports development. This paper presents a literature review on the noninvasive measurement of human vital signs. Our goal is to present methods that allow monitoring of human vital parameters and provide examples of applications in the constructed devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mazurek, T.: Wskazania diagnostyczne do cewnikowania jam serca, zasady zabiegu, pp. 202–205. Gdańsk, Via Medica (2013)
Siedlecka, A., Ciach, K., Świątkowska-Frerund, M., Preis, K.: Fear related to aminocentesis as a method if invasive prenatal diagnosis. GinPolMedProject 4(18), 38–43 (2010)
Pawełczyk, K., Marciniak, M., Kołodziej, J.: Invasive diagnostics of throatic malignant diseases. Adv. Clin. Exp. Med. 13(6), 1067–1072 (2004)
Swora, E., Stankowiak-Kulpa, H., Marcinkowska, E., Grzymisławski, M.: Clinical aspects of diagnostics in heliobacter pylori infection. Nowiny Lekarskie 78(3–4), 228–230 (2009)
Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., Nazezran, H.: A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 4(4), 195–202 (2018)
Celka, P., Charlton, P.H., Farukh, B., Chowienczyk, P., Alastruey, J.: Influence of mental stress on the pulse wave features of photoplethysmograms. Healthcare Technol. Lett. 7(1), 7–12 (2020)
Hong, S., Park, K.S.: Unobtrusive photoplethysmographic monitoring under the foot sole while in a standing posture. Sensors 18, 3239 (2018)
Prokop, D.: Zastosowanie wieloczujnikowego optoelektronicznego systemu pomiarowego do badania przebiegów fali tętna (2017)
Nabeel, P.M., Jayaraj, J., Mohansankar, S.: Single-source PPG based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique. Physiol. Meas. 38(12), 2122–2140 (2017)
Poh, M.-Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011)
Poh, M.-Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Exp. 18(10), 10762–10774 (2010)
Couderc, J.-P., et al.: Detection of atrial fibrillation using contactless facial video monitoring. Heart Rhythm 12(1), 195–201 (2015)
Couderc, J.-P., et al.: Pulse harmonic strength of facial video signal for the detection of atrial fibrillation. Comput. Cardiol. 41, 661–664 (2014)
Sugita, N., et al.: Estimation of absolute blood pressure using video images captured at different heights from the heart. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2019)
Przybyło, J., Kańoch, E., Jabłoński, M., Augustyniak, P.: Distant measurements of plethysmographic signal in various lighting conditions using configurable frame-rate camera. Metrol. Meas. Syst. 23(4), 579–592 (2016)
Mędrala, R., Augustyniak, P.: Taking Videoplethysmographic Measurements at Alternative Parts of the Body - Pilot Study, PCBBE (2019)
Królak, A.: Influence of skin tone on efficiency of vision-based heart rate estimation. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds.) PCBBE 2017. AISC, vol. 647, pp. 44–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66905-2_4
Nabeel, P.M., Jayaraj, J., Mohanasankar, S.: Single-source PPG based local pulse wave velocity measurement: a potential cuffess blood pressure estimation technique. Inst. Phys. Eng. Med. 38(12), 2122–2140 (2017)
Al-Naji, A., Perera, A.G., Chahl, J.: Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle. BioMed. Eng. OnLine 16, 101 (2017). https://doi.org/10.1186/s12938-017-0395-y
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, p. 511. IEEE (2001)
Przybyło, J.: Continuous distant measurement of the user’s heart rate in human-computer interaction applications. Sensors 19, 4205 (2019)
Wu, J.H., Chang, R.S., Jiang, J.A.: A novel pulse measurement system by using laser triangulation and a CMOS image sensor. Sensors 7(12), 3366–3385 (2007). https://doi.org/10.3390/s7123366
Antognoli, L., Moccia, S., Migliorelli, L., Casaccia, S., Scalise, L., Frontoni, E.: Heartbeat detection by laser doppler vibrometry and machine learning. Sensors. 20(18), 5362 (2020)
Lin, J.C.: Noninvasive microwave measurement of respiration. IEEE 63(10), 1530–1530 (1975)
Ren, L., et al.: Phase based methods for heart rate detection using UWB impulse doppler radar. IEEE Trans. Microwave Theor. Tech. 64(10), 3319–3331 (2016)
Rong, Y., Herschfelt, A., Holtom, J., Bliss, D.W.: Cardiac and respiratory sensing from a hovering UAV radar platform. In: 2021 IEEE Statistical Signal Processing Workshop (2021)
Abdulatif, S., et al.: Power-based real-time respiration monitoring using FMCW radar. Comput. Sci. Eng. (2017)
Regev, N., Wulich, D.: Radar-based, simultaneous human presence detection and breathing rate estimation. Sensors 21, 3529 (2021)
Michahelles, F., Wicki, R., Schiele, B.: Less contact: heart-rate detection without even touching the user. In: Eighth International Symposium on Wearable Computers (2004)
Ravichandran, R.: et al., WiBreathe: estimating respiration rate using wireless signals in natural settings in the home. In: 2015 IEEE International Conference on Pervasive Computing and Communications (2015)
Jasińki, Ł.: Pomiar tłumienia ścian i innych elementów charakterystycznych dla środowiska wewnątrzbudynkowego w paśmie 2,4 GHz, www.alvarus.org (2011)
Liu, J., et al.: Recent progress in flexible wearable sensors for vital sign monitoring. Sensors 20, 4009 (2020)
Qiu, S., Wang, Z., Zhao, H., Hu, H.: Using distributed wearable sensors to measure and evaluate human lower limbs motion. IEEE Trans. Instrum. Measur. 65(4), 939–950 (2016)
Weich, C., Vieten, M.M.: The Gaitprint: identifying individuals by their running style. Sensors 20, 3810 (2020)
Petersen, J., Austin, D., Sack, R., Hayes, T.L.: Actigraphy-based scratch detection using logistic regression. IEEE J. Biomed. Health Inf. 17(2), 277–283 (2013)
Zhang, P., Zhang, Z., Chao, H.-C.: A stacked human activity recognition model based on parallel recurrent network and time series evidence theory. Sensors 20, 4016 (2020)
Pitou, S., Michael, B., Thompson, K., Howard, M.: Hand-Made embroidered electromyography: towards a solution for low-income countries. Sensors 20, 3347 (2020)
Chen, Z., Zhu, Q., Soh, Y.C., Zhang, L.: Roboust human activity recognition using smartphone sensors svia CT-PCA and online SVM. IEEE Trans. Ind. Inf. 13(6), 3070–3080 (2017)
Huang, S.-J., Wu, C.-J., Chen, C.-C.: Pattern recognition of human postures using the data density functional method. Appl. Sci. 8, 1615 (2018)
Hossain, T., Ahad, A.R., Inoue, S.: A method for sensor-based activity recognition in missing data scenario. Sensors 20, 3811 (2020)
Horn, B.K.P.: Observation model for indoor positioning. Sensors 20, 4027 (2020)
Kańtoch, E.: Recognition of sedentary behaviour by machine learning analysis of wearable sensors during activities of daily living for telemedical assessment of cardiovascular risk. Sensors 18, 3219 (2018)
Zapata, J., Fernández-Luque, F.J., Ruiz, R.: Wireless sensor network for ambient assisted living, December 2010. ISBN 978-953-307-321-7, https://doi.org/10.5772/13005
Zhang, J., Xue, N., Huang, X.: A secure system for pervasive social network-based healthcare. IEEE Access 4, 9239–9250 (2016)
Chen, M., Zhang, Y., Li, Y., Hassan, M.M., Alamri, A.: AIWAC: affective interaction through wearable computing and cloud technology. IEEE Wirel. Commun. 22(1), 20–27 (2015)
Norouzi, N., Bruder, G., Belna, B., Mutter, S., Turgut, D., Welch, G.: A systematic review of the convergence of augmented reality, intelligent virtual agents, and the internet of things. In: Al-Turjman, F. (ed.) Artificial Intelligence in IoT. TCSCI, pp. 1–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04110-6_1
Acknowledgement
Research supported by the AGH University of Science and Technology in year 2022 from the subvention granted by the Polish Ministry of Science and Higher Education; grant no. 16.16.120.773
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pająk, A., Augustyniak, P. (2022). Touchless Pulse Diagnostics Methods and Devices: A Review. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-09135-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09134-6
Online ISBN: 978-3-031-09135-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)