Abstract
A novel Pixel Interval Sampling Network (PIS-Net) is applied here for dense microorganism counting. The PIS-Net is designed for microorganism image segmentation with encoder to decoder architecture, and then the connected domain detection is applied for counting. The proposed method has good response for edge segmentation between tiny objects. Several classical segmentation metrics (Dice, Jaccard, and Hausdorff distance) are applied for evaluation. Experimental result shows that the proposed PIS-Net has the best performance and potential for dense tiny object counting tasks, which achieves \(96.88\%\) counting accuracy on the dataset with 420 yeast cell images. By comparing with the state-of-the-art approaches like Attention U-Net, Swin U-Net, and Trans U-Net, the proposed PIS-Net can segment the dense tiny objects with clearer boundaries and fewer incorrect debris, which shows the great potential of PIS-Net in the task of accurate counting tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ates, H., Gerek, O.: An image-processing based automated bacteria colony counter. In: Proceedings of ISCIS 2009, pp. 18–23 (2009)
Austerjost, J., Marquard, D., Raddatz, L., et al.: A smart device application for the automated determination of E. coli colonies on agar plates. Eng. Life Sci. 17(8), 959–966 (2017)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Barbedo, J.: An algorithm for counting microorganisms in digital images. IEEE Lat. Am. Trans. 11(6), 1353–1358 (2013)
Barber, P., Vojnovic, B., Kelly, J., et al.: An automated colony counter utilising a compact Hough transform. Proc. MIUA 2000, 41–44 (2000)
Blackburn, N., Hagström, Å., Wikner, J., et al.: Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl. Environ. Microbiol. 64(9), 3246–3255 (1998)
Boss, R., Thangavel, K., Daniel, D.: Automatic mammogram image breast region extraction and removal of pectoral muscle. arXiv: 1307.7474 (2013)
Cao, H., Wang, Y., Chen, J., et al.: Swin-unet: unet-like pure transformer for medical image segmentation. arXiv: 2105.05537 (2021)
Chen, J., Lu, Y., Yu, Q., et al.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv: 2102.04306 (2021)
Clarke, M., Burton, R., Hill, A., et al.: Low-cost, high-throughput, automated counting of bacterial colonies. Cytometry Part A 77(8), 790–797 (2010)
Dietler, N., Minder, M., Gligorovski, V., et al.: A convolutional neural network segments yeast microscopy images with high accuracy. Nature Commun. 11(1), 1–8 (2020)
Ferrari, A., Lombardi, S., Signoroni, A.: Bacterial colony counting by convolutional neural networks. In: Proceedings of EMBC 2015, pp. 7458–7461 (2015)
Hong, M., Yujie, W., Caihong, W., et al.: Study on heterotrophic bacteria colony counting based on image processing method. Control Instrum. Chem. Ind. 35(3), 38–41 (2008)
Jiawei, Z., Chen, L., Rahaman, M., et al.: A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Artif. Intell. Rev. 55, 2875–2944 (2021)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv: 1412.6980 (2014)
Kosov, S., Shirahama, K., Li, C., et al.: Environmental microorganism classification using conditional random fields and deep convolutional neural networks. Pattern Recogn. 77, 248–261 (2018)
Kulwa, F., Li, C., Zhao, X., et al.: A state-of-the-art survey for microorganism image segmentation methods and future potential. IEEE Access 7, 100243–100269 (2019)
Kulwa, F., Li, C., Zhang, J., et al.: A new pairwise deep learning feature for environmental microorganism image analysis. Environmental Science and Pollution Research p, Online first (2022)
Li, C., Wang, K., Xu, N.: A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif. Intell. Rev. 51(4), 577–646 (2017). https://doi.org/10.1007/s10462-017-9572-4
Li, C., Zhang, J., Kulwa, F., Qi, S., Qi, Z.: A SARS-CoV-2 microscopic image dataset with ground truth images and visual features. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12305, pp. 244–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_20
Oktay, O., Schlemper, J.F., et al.: Attention u-net: Learning where to look for the pancreas. arXiv: 1804.03999 (2018)
Rahaman, M., Li, C., Yao, Y., et al.: Identification of COVID-19 samples from chest X-Ray images using deep learning: a comparison of transfer learning approaches. J. X-ray Sci. Technol. 28(5), 821–839 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of ICMICCAI 2015, pp. 234–241 (2015)
Selinummi, J., Seppälä, J., Yli-Harja, O., et al.: Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques 39(6), 859–863 (2005)
Tang, Y., Ji, J.and Gao, S., et al.: A pruning neural network model in credit classification analysis. Comput. Intell. Neurosci. 2018, 22 (2018). Article ID: 9390410
Xu, H., Li, C., Rahaman, M.M., et al.: An enhanced framework of generative adversarial networks (EF-GANs) for environmental microorganism image augmentation with limited rotation-invariant training data. IEEE Access 8(1), 187455–187469 (2020)
Yamaguchi, N., Ichijo, T., Ogawa, M., et al.: Multicolor excitation direct counting of bacteria by fluorescence microscopy with the automated digital image analysis software BACS II. Bioimages 12(1), 1–7 (2004)
Yoon, S., Lawrence, K., Park, B.: Automatic counting and classification of bacterial colonies using hyperspectral imaging. Food Bioprocess Technol. 8(10), 2047–2065 (2015)
Yoshizawa, K.: Treatment of waste-water discharged from sake brewery using yeast. J. Ferment Technol. 56, 389–395 (1978)
You, L., Zhao, D., Zhou, R., et al.: Distribution and function of dominant yeast species in the fermentation of strong-flavor baijiu. World J. Microbiol. Biotechnol. 37(2), 1–12 (2021)
Zeiler, M., Krishnan, D., Taylor, G., et al.: Deconvolutional networks. In: Proceedings of of CVPR 2020, pp. 2528–2535 (2010)
Zeiler, M., Taylor, G., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: Proceedings of ICCV 2011, pp. 2018–2025 (2011)
Zhang, C., Chen, W., Liu, W., et al.: An automated bacterial colony counting system. In: Proceedings of SUTC 2008, pp. 233–240 (2008)
Zhang, H., Jian, L.: Current microbial techniques for biodegradation of wastewater with high lipid concentrations. Tech. Equipment Environ. Pollut. Control 3, 28–32 (2004)
Zhang, J., Li, C., Kosov, S., et al.: LCU-net: a novel low-cost U-net for environmental microorganism image segmentation. Pattern Recogn. 115, 107885 (2021)
Zhang, J., Li, C., Kulwa, F., et al.: A multi-scale CNN-CRF framework for environmental microorganism image segmentation. BioMed Res. Int. 2020, 1–27 (2020)
Zhang, R., Zhao, S., Jin, Z., et al.: Application of SVM in the food bacteria image recognition and count. In: Proceedings of ICISP 2010, vol. 4, pp. 1819–1823 (2010)
Zhao, P., Li, C., Rahaman, M.M., et al.: Comparative study of deep learning classification methods on a small environmental microorganism image dataset (EMDS-6): from convolutional neural networks to visual transformers. Front. Microbiol. 13, 792166 (2022). https://doi.org/10.3389/fmicb.2022.792166
Acknowledgement
This work is supported by “National Natural Science Foundation of China” (No. 61806047).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J., Li, C., Sun, H., Grzegorzek, M. (2022). PIS-Net: A Novel Pixel Interval Sampling Network for Dense Microorganism Counting in Microscopic Images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-09135-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09134-6
Online ISBN: 978-3-031-09135-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)