[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PIS-Net: A Novel Pixel Interval Sampling Network for Dense Microorganism Counting in Microscopic Images

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1429))

Included in the following conference series:

  • 398 Accesses

Abstract

A novel Pixel Interval Sampling Network (PIS-Net) is applied here for dense microorganism counting. The PIS-Net is designed for microorganism image segmentation with encoder to decoder architecture, and then the connected domain detection is applied for counting. The proposed method has good response for edge segmentation between tiny objects. Several classical segmentation metrics (Dice, Jaccard, and Hausdorff distance) are applied for evaluation. Experimental result shows that the proposed PIS-Net has the best performance and potential for dense tiny object counting tasks, which achieves \(96.88\%\) counting accuracy on the dataset with 420 yeast cell images. By comparing with the state-of-the-art approaches like Attention U-Net, Swin U-Net, and Trans U-Net, the proposed PIS-Net can segment the dense tiny objects with clearer boundaries and fewer incorrect debris, which shows the great potential of PIS-Net in the task of accurate counting tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ates, H., Gerek, O.: An image-processing based automated bacteria colony counter. In: Proceedings of ISCIS 2009, pp. 18–23 (2009)

    Google Scholar 

  2. Austerjost, J., Marquard, D., Raddatz, L., et al.: A smart device application for the automated determination of E. coli colonies on agar plates. Eng. Life Sci. 17(8), 959–966 (2017)

    Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Barbedo, J.: An algorithm for counting microorganisms in digital images. IEEE Lat. Am. Trans. 11(6), 1353–1358 (2013)

    Article  Google Scholar 

  5. Barber, P., Vojnovic, B., Kelly, J., et al.: An automated colony counter utilising a compact Hough transform. Proc. MIUA 2000, 41–44 (2000)

    Google Scholar 

  6. Blackburn, N., Hagström, Å., Wikner, J., et al.: Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl. Environ. Microbiol. 64(9), 3246–3255 (1998)

    Article  Google Scholar 

  7. Boss, R., Thangavel, K., Daniel, D.: Automatic mammogram image breast region extraction and removal of pectoral muscle. arXiv: 1307.7474 (2013)

  8. Cao, H., Wang, Y., Chen, J., et al.: Swin-unet: unet-like pure transformer for medical image segmentation. arXiv: 2105.05537 (2021)

  9. Chen, J., Lu, Y., Yu, Q., et al.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv: 2102.04306 (2021)

  10. Clarke, M., Burton, R., Hill, A., et al.: Low-cost, high-throughput, automated counting of bacterial colonies. Cytometry Part A 77(8), 790–797 (2010)

    Article  Google Scholar 

  11. Dietler, N., Minder, M., Gligorovski, V., et al.: A convolutional neural network segments yeast microscopy images with high accuracy. Nature Commun. 11(1), 1–8 (2020)

    Article  Google Scholar 

  12. Ferrari, A., Lombardi, S., Signoroni, A.: Bacterial colony counting by convolutional neural networks. In: Proceedings of EMBC 2015, pp. 7458–7461 (2015)

    Google Scholar 

  13. Hong, M., Yujie, W., Caihong, W., et al.: Study on heterotrophic bacteria colony counting based on image processing method. Control Instrum. Chem. Ind. 35(3), 38–41 (2008)

    Google Scholar 

  14. Jiawei, Z., Chen, L., Rahaman, M., et al.: A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Artif. Intell. Rev. 55, 2875–2944 (2021)

    Google Scholar 

  15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv: 1412.6980 (2014)

  16. Kosov, S., Shirahama, K., Li, C., et al.: Environmental microorganism classification using conditional random fields and deep convolutional neural networks. Pattern Recogn. 77, 248–261 (2018)

    Article  Google Scholar 

  17. Kulwa, F., Li, C., Zhao, X., et al.: A state-of-the-art survey for microorganism image segmentation methods and future potential. IEEE Access 7, 100243–100269 (2019)

    Article  Google Scholar 

  18. Kulwa, F., Li, C., Zhang, J., et al.: A new pairwise deep learning feature for environmental microorganism image analysis. Environmental Science and Pollution Research p, Online first (2022)

    Google Scholar 

  19. Li, C., Wang, K., Xu, N.: A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif. Intell. Rev. 51(4), 577–646 (2017). https://doi.org/10.1007/s10462-017-9572-4

    Article  Google Scholar 

  20. Li, C., Zhang, J., Kulwa, F., Qi, S., Qi, Z.: A SARS-CoV-2 microscopic image dataset with ground truth images and visual features. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12305, pp. 244–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_20

    Chapter  Google Scholar 

  21. Oktay, O., Schlemper, J.F., et al.: Attention u-net: Learning where to look for the pancreas. arXiv: 1804.03999 (2018)

  22. Rahaman, M., Li, C., Yao, Y., et al.: Identification of COVID-19 samples from chest X-Ray images using deep learning: a comparison of transfer learning approaches. J. X-ray Sci. Technol. 28(5), 821–839 (2020)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of ICMICCAI 2015, pp. 234–241 (2015)

    Google Scholar 

  24. Selinummi, J., Seppälä, J., Yli-Harja, O., et al.: Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques 39(6), 859–863 (2005)

    Article  Google Scholar 

  25. Tang, Y., Ji, J.and Gao, S., et al.: A pruning neural network model in credit classification analysis. Comput. Intell. Neurosci. 2018, 22 (2018). Article ID: 9390410

    Google Scholar 

  26. Xu, H., Li, C., Rahaman, M.M., et al.: An enhanced framework of generative adversarial networks (EF-GANs) for environmental microorganism image augmentation with limited rotation-invariant training data. IEEE Access 8(1), 187455–187469 (2020)

    Article  Google Scholar 

  27. Yamaguchi, N., Ichijo, T., Ogawa, M., et al.: Multicolor excitation direct counting of bacteria by fluorescence microscopy with the automated digital image analysis software BACS II. Bioimages 12(1), 1–7 (2004)

    Google Scholar 

  28. Yoon, S., Lawrence, K., Park, B.: Automatic counting and classification of bacterial colonies using hyperspectral imaging. Food Bioprocess Technol. 8(10), 2047–2065 (2015)

    Article  Google Scholar 

  29. Yoshizawa, K.: Treatment of waste-water discharged from sake brewery using yeast. J. Ferment Technol. 56, 389–395 (1978)

    Google Scholar 

  30. You, L., Zhao, D., Zhou, R., et al.: Distribution and function of dominant yeast species in the fermentation of strong-flavor baijiu. World J. Microbiol. Biotechnol. 37(2), 1–12 (2021)

    Article  Google Scholar 

  31. Zeiler, M., Krishnan, D., Taylor, G., et al.: Deconvolutional networks. In: Proceedings of of CVPR 2020, pp. 2528–2535 (2010)

    Google Scholar 

  32. Zeiler, M., Taylor, G., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: Proceedings of ICCV 2011, pp. 2018–2025 (2011)

    Google Scholar 

  33. Zhang, C., Chen, W., Liu, W., et al.: An automated bacterial colony counting system. In: Proceedings of SUTC 2008, pp. 233–240 (2008)

    Google Scholar 

  34. Zhang, H., Jian, L.: Current microbial techniques for biodegradation of wastewater with high lipid concentrations. Tech. Equipment Environ. Pollut. Control 3, 28–32 (2004)

    Google Scholar 

  35. Zhang, J., Li, C., Kosov, S., et al.: LCU-net: a novel low-cost U-net for environmental microorganism image segmentation. Pattern Recogn. 115, 107885 (2021)

    Article  Google Scholar 

  36. Zhang, J., Li, C., Kulwa, F., et al.: A multi-scale CNN-CRF framework for environmental microorganism image segmentation. BioMed Res. Int. 2020, 1–27 (2020)

    Google Scholar 

  37. Zhang, R., Zhao, S., Jin, Z., et al.: Application of SVM in the food bacteria image recognition and count. In: Proceedings of ICISP 2010, vol. 4, pp. 1819–1823 (2010)

    Google Scholar 

  38. Zhao, P., Li, C., Rahaman, M.M., et al.: Comparative study of deep learning classification methods on a small environmental microorganism image dataset (EMDS-6): from convolutional neural networks to visual transformers. Front. Microbiol. 13, 792166 (2022). https://doi.org/10.3389/fmicb.2022.792166

Download references

Acknowledgement

This work is supported by “National Natural Science Foundation of China” (No. 61806047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Li, C., Sun, H., Grzegorzek, M. (2022). PIS-Net: A Novel Pixel Interval Sampling Network for Dense Microorganism Counting in Microscopic Images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_26

Download citation

Publish with us

Policies and ethics