[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Clinical Decision Support System for Multisensory Stimulation Therapy in Dementia: A Preliminary Study

  • Conference paper
  • First Online:
Ambient Assisted Living (ForItAAL 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 884))

Included in the following conference series:

Abstract

Worldwide around 50 million people are affected by Dementia, causing a growing public health problem with significant impact not only on individuals but also on caregivers, families, and communities. The first-line therapy is pharmacological, based on the use of a few drugs with effects on brain neurotransmitters. Nevertheless, these therapies are contraindicated in some subjects, offer few results and associated side-effects are not negligible. Among various available non-pharmacological treatments, the Snoezelen one (i.e., multisensory stimulation) is particularly interesting, since its main goal is the reduction of pressure and tension experienced by the patient in the housing groups. However, there is no clear evidence right now that such non-pharmacological interventions are effective in subjects with dementia. The aim of this study is to design and prototype a Clinical Decision Support System (CDSS) that collects patient’s neurovegetative parameters during stimulation sessions, and searches for patterns that are predictive of behavioral state change (e.g., from agitated to relaxed, or from apathetic to activated), allowing therapists to decide with greater reliability the best stimulation combination for a patient. The proposed algorithmic framework was evaluated using publicly available data, also in perturbed form to investigate more challenging patterns. The compared predictive approaches (i.e., multivariate time series classification) achieved accuracy rates greater than 85% with original data, and greater than 83% when complex combinations of both shape and temporal perturbations were present. Instead, in the case of only one kind of perturbation, either shape or temporal, the achieved accuracy was greater than 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization: Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. WHO, Geneva (2019)

    Google Scholar 

  2. Huang, L.Y., et al.: Association of occupational factors and dementia or cognitive impairment: a systematic review and meta-analysis. J. Alzheimer's Dis. (Preprint), pp. 1–11 (2020)

    Google Scholar 

  3. Francis, P.T.: Altered glutamate neurotransmission and behaviour in dementia: evidence from studies of memantine. Curr. Mol. Pharmacol. 2(1), 77–82 (2009)

    Article  Google Scholar 

  4. Doggrell, S.A., Evans, S.: Treatment of dementia with neurotransmission modulation. Expert Opin. Investig. Drugs 12(10), 1633–1654 (2003)

    Article  Google Scholar 

  5. Grantham, C., Geerts, H.: The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J. Neurol. Sci. 203, 131–136 (2002)

    Article  Google Scholar 

  6. Obrien, J.T., Burns, A.: Clinical practice with anti-dementia drugs: a revised (second) consensus statement from the British Association for Psychopharmacology. J. Psychopharmacol. 25(8), 997–1019 (2011)

    Article  Google Scholar 

  7. O’Brien, J.T., et al.: Clinical practice with anti-dementia drugs: a revised (third) consensus statement from the British Association for Psychopharmacology. J. Psychopharmacol. 31(2), 147–168 (2017)

    Article  Google Scholar 

  8. Takeda, M., Tanaka, T., Okochi, M., Kazui, H.: Non-pharmacological intervention for dementia patients. Psychiatry Clin. Neurosci. 66(1), 1–7 (2012)

    Article  Google Scholar 

  9. Verheul, A.: Fundamental philosophy of Snoezelen–historical backround, planning and concept. In: Mertens, K., Verheul, A. (toim.) Teoksessa Snoezelen–Application Fields in Practise. pp. 25–54. ISNA, Germany and the Netherlands (2005)

    Google Scholar 

  10. Chung, J.C., Lai, C.K.: Snoezelen for dementia. Cochrane Database of Syst. Rev. 4 (2002)

    Google Scholar 

  11. Berkheimer, S.D., Qian, C., Malmstrom, T.K.: Snoezelen therapy as an intervention to reduce agitation in nursing home patients with dementia: a pilot study. J. Am. Med. Dir. Assoc. 18(12), 1089–1091 (2017)

    Article  Google Scholar 

  12. Strøm, B.S., Ytrehus, S., Grov, E.-K.: Sensory stimulation for persons with dementia: a review of the literature. J Clin. Nurs. 25(13–14), 1805–1834 (2016)

    Article  Google Scholar 

  13. Duchi, F., Benalcázar, E., Huerta, M., Bermeo, J.P., Lozada, F., Condo, S.: Design of a multisensory room for elderly people with neurodegenerative diseases. IFMBE Proc. 68(3), 207–210 (2019)

    Article  Google Scholar 

  14. Maseda, A., et al.: Multisensory stimulation and individualized music sessions on older adults with severe dementia: effects on mood, behavior, and biomedical parameters. J. Alzheimer’s Dis. 63(4), 1415–1425 (2018)

    Article  Google Scholar 

  15. Maseda, A., Sánchez, A., Marante, M.P., González-Abraldes, I., Buján, A., Millán-Calenti, J.C.: Effects of multisensory stimulation on a sample of institutionalized elderly people with dementia diagnosis: a controlled longitudinal trial. Am. J. Alzheimers Dis. Other Demen. 29(5), 463–473 (2014)

    Article  Google Scholar 

  16. Singh, N.N., et al.: Effects of Snoezelen room, activities of daily living skills training, and vocational skills training on aggression and self-injury by adults with mental retardation and mental illness. Res. Dev. Disabil. 25(3), 285–293 (2004)

    Article  Google Scholar 

  17. Kragt, K., Holtkamp, C.C., van Dongen, M.C., van Rossum, E., Salentijn, C.:The effect of sensory stimulation in the sensory stimulation room on the well-being of demented elderly. A cross-over trial in residents of the R.C. Care Center Bernardus in Amsterdam. Verpleegkunde 12(4), 227–236 (1997)

    Google Scholar 

  18. Bailly, N., Pointereau, S.: Effects of Snoezelen on people with dementia. NPG Neurologie - Psychiatrie - Geriatrie 11(66), 268–273 (2011)

    Article  Google Scholar 

  19. Baillon, S., van Diepen, E., Prettyman, R., Rooke, N., Redman, J., Campbell, R.: Variability in response of older people with dementia to both Snoezelen and reminiscence. Br. J. Occup. Ther. 68(8), 367–374 (2005)

    Article  Google Scholar 

  20. Van Weert, J.C., Van Dulmen, A.M., Spreeuwenberg, P.M., Ribbe, M.W., Bensing, J.M.: Behavioral and mood effects of snoezelen integrated into 24 hour dementia care. J. Am. Geriatr. Soc. 53(1), 24–33 (2005)

    Article  Google Scholar 

  21. Van Weert, J.C., van Dulmen, A.M., Spreeuwenberg, P.M.M., Ribbe, M.W., Bensing, J.M.: Effects of snoezelen, integrated in 24h dementia care, on nursing-patient communication during morning care. Patient Educ. Cons. 58, 316–326 (2005)

    Google Scholar 

  22. Berntson, G.G., Cacioppo, J.T., Quigley, K.S.: Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychol. Rev. 98(4), 459 (1991)

    Article  Google Scholar 

  23. Beauchaine, T.: Vagal tone, development, and Gray’s motivational theory: toward an integrated model of autonomic nervous system functioning in psychopathology. Dev. Psychopathol. 13(2), 183–214 (2001)

    Article  Google Scholar 

  24. Goldstein, S., Naglieri, J.A., Princiotta, D., Otero, T.M.: Introduction: a history of executive functioning as a theoretical and clinical construct. In: Handbook of Executive Functioning, pp. 3–12. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-8106-5

  25. McEwen, B.S.: Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 583(2–3), 174–185 (2008)

    Article  Google Scholar 

  26. Cacioppo, J.T., Tassinary, L.G., Berntson, G.G.: Handbook of Psychophysiology. Cambridge University Press, New York (2007)

    Google Scholar 

  27. Jänig, W., McLachlan, E.M.: Characteristics of function-specific pathways in the sympathetic nervous system. Trends Neurosci. 15, 475–481 (1992)

    Article  Google Scholar 

  28. Sakr, G.E., Elhajj, I.H., Wejinya, U.C.: Multi level SVM for subject independent agitation detection. In: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 538–543. IEEE (2009)

    Google Scholar 

  29. Lisetti, C.L., Nasoz, F.: Using noninvasive wearable computers to recognize human emotions from physiological signals. EURASIP J. Appl. Sig. Process. 11, 1672–1687 (2004)

    Google Scholar 

  30. Kistler, A., Mariauzoulsb, C., von Berlepscha, K.: Fingertip temperature as an indicator for sympathetic responses. Int. J. Psychophysiol. 29, 35–41 (1998)

    Article  Google Scholar 

  31. Fernandes, A., Helawar, R., Lokesh, R., Tari, T., Shahapurkar, A.V.: Determination of stress using blood pressure and galvanic skin response. In: 2014 International Conference on Communication and Network Technologies, pp. 165–168. IEEE (2014)

    Google Scholar 

  32. Sakr, G.E., Elhajj, I.H., Huijer, H.A.S.: Support vector machines to define and detect agitation transition. IEEE Trans. Affect. Comput. 1(2), 98–108 (2010)

    Article  Google Scholar 

  33. Sakr, G.E., Elhajj, I.H., Joujou, M.K., Abboud, S., Huijer, H.A.S.: Portable wireless device for automated agitation detection. In: E-Healthcare Systems and Wireless Communications: Current and Future Challenges, pp. 236–255. IGI Global (2912)

    Google Scholar 

  34. Jeong, Y.-S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44(9), 2231–2240 (2011)

    Article  Google Scholar 

  35. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min. Knowl. Disc. 7(4), 349–371 (2003)

    Article  MathSciNet  Google Scholar 

  36. Ratanamahatana, C., Keogh, E.: Making time-series classification more accurate using learned constraints. In: Proceedings of the SIAM International Conference on Data Mining, pp. 11–22 (2004).

    Google Scholar 

  37. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2004). https://doi.org/10.1007/s10115-004-0154-9

    Article  Google Scholar 

  38. Górecki, T., Łuczak, M.: Multivariate time series classification with parametric derivative dynamic time warping. Expert Syst. Appl. 42(5), 2305–2312 (2015)

    Article  Google Scholar 

  39. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 14(4), 491–502 (2005)

    Google Scholar 

  40. Zhao, J.H., Dong, Z., Xu, Z.: Effective feature preprocessing for time series forecasting. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 769–781. Springer, Heidelberg (2006). https://doi.org/10.1007/11811305_84

    Chapter  Google Scholar 

  41. Rodríguez, J.J., Alonso, C.J.: Support vector machines of interval-based features for time series classification. In: Bramer, M., Coenen, F., Allen, T. (eds.) Research and Development in Intelligent Systems XXI. SGAI 2004, pp. 244–257. Springer, London (2004). https://doi.org/10.1007/1-84628-102-4_18

    Chapter  Google Scholar 

  42. Rodríguez, J.J., Alonso, C.J., Maestro, J.A.: Support vector machines of interval-based features for time series classification. Knowl.-Based Syst. 18(4–5), 171–178 (2005)

    Article  Google Scholar 

  43. Kadous, M.W., Sammut, C.: Classification of multivariate time series and structured data using constructive induction. Mach. Learn. 58(2–3), 179–216 (2005)

    Article  MATH  Google Scholar 

  44. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multidimensional time-series with support for multiple distance measures. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 216–225 (2003)

    Google Scholar 

  45. Kuncheva, L.I., Rodríguez, J.J.: Interval feature extraction for classification of event-related potentials (ERP) in EEG data analysis. Progress. Artif. Intell. 2(1), 65–72 (2013)

    Article  Google Scholar 

  46. Matlab Version 9.7.0.1296695 (R2019b): On-Line User’s Manual. Mathworks Inc., Natick (2019)

    Google Scholar 

  47. Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)

    Article  Google Scholar 

  48. Sharma, N., Gedeon, T.: Objective measures, sensors and computational techniques for stress recognition and classification: a survey. Comput. Methods Programs Biomed. 108(3), 1287–1301 (2012)

    Article  Google Scholar 

  49. Saito, N., Coifman, R.R.: Local feature extraction and its applications using a library of bases. Doctoral dissertation, Yale University (1994).

    Google Scholar 

  50. Luo, Y., He, P., Guo, C., Chen, G., Li, N., Zheng, X.: Association between sensory impairment and dementia in older adults: evidence from China. J. Am. Geriatr. Soc. 66, 480–486 (2018)

    Article  Google Scholar 

  51. Brenowitz, W.D., Kaup, A.R., Lin, F.R., Yaffe, K.: Multiple sensory impairment is associated with increased risk of dementia among black and white older adults. J. Gerontol. A. Biol. Sci. Med. Sci. 74, 890–896 (2018)

    Article  Google Scholar 

  52. Deal, J.A., Betz, J., Yaffe, K., et al.: Hearing impairment and incident dementia and cognitive decline in older adults: the health ABC study. J. Gerontol. A Biol. Sci. Med. Sci. 72, 703–709 (2017)

    Google Scholar 

  53. Rogers, M.A., Langa, K.M.: Untreated poor vision: a contributing factor to late-life dementia. Am. J. Epidemiol. 171, 728–735 (2010)

    Article  Google Scholar 

  54. Snowden, J.S., Bathgate, D., Varma, A., Blackshaw, A., Gibbons, Z.C., Neary, D.: Ditinct behavioural profiles in frontotemporal dementia and semantic dementia. J. Neurol. Neurosurg. Psychiatry 70, 323–332 (2001)

    Article  Google Scholar 

  55. Fletcher, P.D., et al.: Pain and temperature processing in dementia: a clinical and neuroanatomical analysis. Brain 138, 3360–3372 (2015)

    Article  Google Scholar 

  56. Defrin, R., et al.: Experimental pain processing in individuals with cognitive impairment: current state of the science. Pain 156, 1396–1408 (2015)

    Article  Google Scholar 

  57. Midorikawa, A., Leyton, C.E., Foxe, D., Landin-Romero, R., Hodges, J.R., Piguet, O.: All is not lost: positive behaviors in Alzheimer’s disease and behavioral-variant frontotemporal dementia with disease severity. J. Alzheimers Dis. 54(2), 549–558 (2016)

    Article  Google Scholar 

  58. Lin, F.R., et al.: Hearing loss and incident dementia. Arch. Neurol. 68, 214–220 (2011)

    Google Scholar 

  59. Davies, H.R., Cadar, D., Herbert, A., Orrell, M., Steptoe, A.: Hearing impairment and incident dementia: findings from the England Longitudinal Study of Ageing. J. Am. Geriatr. Soc. 65, 2074–2081 (2017)

    Article  Google Scholar 

  60. Iseri, P.K., Altinas, O., Tokay, T., Yuksel, N.: Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer’s disease. J. Neuroophthalmol. 26, 18–24 (2006)

    Article  Google Scholar 

  61. Beshira, F., Feke, G.T., Trempe, C.L., McMeel, J.W., Schepens, C.L.: Retinal abnormalities in early Alzheimer’s disease. Invest. Ophthalmol. Vis. Sci. 48, 2285–2289 (2007)

    Article  Google Scholar 

  62. Gilmore, G.C., Groth, K.E., Thomas, C.W.: Stimulus contrast and word reading speed in Alzheimer’s disease. Exp. Aging Res. 31, 15–33 (2005)

    Article  Google Scholar 

  63. Risacher, S.L., et al.: Visual contrast sensitivity in Alzheimer’s disease, mild cognitive impairement, and older adults with cognitive complaints. Neurobiol. Aging 34, 1133–1144 (2013)

    Article  Google Scholar 

  64. Granholm, E., et al.: Tropicamide effects on pupil size and pupillary light reflexes in Alzheimer’s and Parkinson’s disease. Int. J. Psychophysiol. 47, 95–115 (2003)

    Article  Google Scholar 

  65. Bittner, D.M., Wieseler, I., Wilhelm, H., Riepe, M.W., Müller, N.G.: Repetitive pupil light reflex: potential marker in Alzheimer’s disease? J. Alzheimers Dis. 42, 1469–1477 (2014)

    Article  Google Scholar 

  66. Braak, H., Del Tredici, K.: The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 121, 171–181 (2011)

    Article  Google Scholar 

  67. Waldton, S.: Clinical observations of impaired cranial nerve function in senile dementia. Acta Psychiat. Scand. 50, 539–547 (1974)

    Article  Google Scholar 

  68. Oleson, S., Murphy, C.: Olfactory dysfunction in ApoE ε4/4 homozygotes with Alzheimer’s disease. J. Alzheimers Dis. 46, 791–803 (2015)

    Article  Google Scholar 

  69. Woodward, M.R., et al.: Validation of olfactory deficit as a biomarker of Alzheimer disease. Neurol. Clin. Pract. 7, 5–14 (2017)

    Article  Google Scholar 

  70. Albers, M.W., et al.: At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement. 11, 70–98 (2015)

    Article  Google Scholar 

  71. Rahayel, S., Frasnelli, J., Joubert, S.: The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: a meta-analysis. Behav. Brain Res. 231, 60–74 (2012)

    Article  Google Scholar 

  72. Murphy, C., Jernigan, T.L., Fennema-Notestine, C.: Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. J. Int. Neuropsychol. Soc. 9, 459–471 (2003)

    Article  Google Scholar 

  73. Toner, C.K., et al.: Vision-fair neuropsychological assessment in normal aging, Parkinson’s disease and Alzheimer’s disease. Psychol. Aging 27, 785–790 (2012)

    Article  Google Scholar 

  74. Egger, M., Ley, M., Hanke, S.: Emotion recognition from physiological signal analysis: a review. Electr. Notes Theoret. Comput. Sci. 343, 35–55 (2019)

    Article  Google Scholar 

  75. Baillon, S., Van Diepen, E., Prettyman, R., Redman, J., Rooke, N., Campbell, R.: A comparison of the effects of Snoezelen and reminiscence therapy on the agitated behaviour of patients with dementia. Int. J. Geriatr. Psychiatry 19(11), 1047–1052 (2004)

    Article  Google Scholar 

  76. Maseda, A., Sanchez, A., Marante, M.P., Gonzalez-Abraldes, I., de Labra, C., Millan-Calenti, J.C.: Multisensory stimulation on mood, behavior, and biomedical parameters in people with dementia: Is it more effective than conventional one-to-one stimulation? Am. J. Alzheimer’s Disease Other Dement. 29(7), 637–647 (2014)

    Google Scholar 

Download references

Acknowledgments

This work has been carried out within the project “Multisensory Stimulation Lab” (MS-Lab, KL92WF9) funded by Apulia Region within the “POR Puglia” FESR-FSE 2014–2020 (Asse prioritario 1 - Ricerca, sviluppo tecnologico e innovazione, Azione 1.4.b “Supporto alla generazione di soluzioni innovative a specifici problemi di rilevanza sociale”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Diraco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diraco, G., Leone, A., Siciliano, P. (2022). Clinical Decision Support System for Multisensory Stimulation Therapy in Dementia: A Preliminary Study. In: Bettelli, A., Monteriù, A., Gamberini, L. (eds) Ambient Assisted Living. ForItAAL 2020. Lecture Notes in Electrical Engineering, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-031-08838-4_22

Download citation

Publish with us

Policies and ethics