[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Your Social Circle Affects Your Interests: Social Influence Enhanced Session-Based Recommendation

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13352))

Included in the following conference series:

Abstract

Session-based recommendation aims at predicting the next item given a series of historical items a user interacts with in a session. Many works try to make use of social network to achieve a better recommendation performance. However, existing works treat the weights of user edges as the same and thus neglect the differences of social influences among users in a social network, for each user’s social circle differs widely. In this work, we try to utilize an explicit way to describe the impact of social influence in recommender system. Specially, we build a heterogeneous graph, which is composed of users and items nodes. We argue that the fewer neighbors users have, the more likely users may be influenced by neighbors, and different neighbors may have various influences on users. Hence weights of user edges are computed to characterize different influences of social circles on users in a recommendation simulation. Moreover, based on the number of followers and PageRank score of each user, we introduce various computing methods for weights of user edges from a comprehensive perspective. Extensive experiments performed on three public datasets demonstrate the effectiveness of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/site/yangdingqi/home/foursquare-dataset.

  2. 2.

    https://snap.stanford.edu/data/loc-gowalla.html.

  3. 3.

    https://grouplens.org/datasets/hetrec-2011/.

References

  1. Chen, T., Wong, R.C.W.: Handling information loss of graph neural networks for session-based recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1172–1180 (2020)

    Google Scholar 

  2. Chen, T., Wong, R.C.W.: An efficient and effective framework for session-based social recommendation. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 400–408 (2021)

    Google Scholar 

  3. Chipchagov, M., Kublik, E.: Model of the cold-start recommender system based on the Petri-Markov nets. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12743, pp. 87–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77964-1_7

    Chapter  Google Scholar 

  4. Choi, M., Kim, J., Lee, J., Shim, H., Lee, J.: Session-aware linear item-item models for session-based recommendation. In: Proceedings of the Web Conference 2021, pp. 2186–2197 (2021)

    Google Scholar 

  5. Guo, L., Tang, L., Chen, T., Zhu, L., Nguyen, Q.V.H., Yin, H.: DA-GCN: a domain-aware attentive graph convolution network for shared-account cross-domain sequential recommendation. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. IJCAI, pp. 2483–2489 (2021)

    Google Scholar 

  6. Guo, L., Yin, H., Wang, Q., Chen, T., Zhou, A., Quoc Viet Hung, N.: Streaming session-based recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1569–1577 (2019)

    Google Scholar 

  7. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 843–852 (2018)

    Google Scholar 

  8. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: 4th International Conference on Learning Representations, ICLR (2016)

    Google Scholar 

  9. Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.: Parallel recurrent neural network architectures for feature-rich session-based recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 241–248 (2016)

    Google Scholar 

  10. Hsu, C., Li, C.T.: RetaGNN: relational temporal attentive graph neural networks for holistic sequential recommendation. In: Proceedings of the Web Conference, pp. 2968–2979 (2021)

    Google Scholar 

  11. Jiang, B., Lu, Z., Liu, Y., Li, N., Cui, Z.: Social recommendation in heterogeneous evolving relation network. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12137, pp. 554–567. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50371-0_41

    Chapter  Google Scholar 

  12. Kużelewska, U.: Effect of dataset size on efficiency of collaborative filtering recommender systems with multi-clustering as a neighbourhood identification strategy. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12139, pp. 342–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50420-5_25

    Chapter  Google Scholar 

  13. Kuzelewska, U.: Quality of recommendations and cold-start problem in recommender systems based on multi-clusters. In: Computational Science - ICCS 2021–21st International Conference, pp. 72–86 (2021)

    Google Scholar 

  14. Landin, A., Parapar, J., Barreiro, Á.: Novel and diverse recommendations by leveraging linear models with user and item embeddings. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 215–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_27

    Chapter  Google Scholar 

  15. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1419–1428 (2017)

    Google Scholar 

  16. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: Stamp: short-term attention/memory priority model for session-based recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1831–1839 (2018)

    Google Scholar 

  17. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, pp. 287–296 (2011)

    Google Scholar 

  18. Meng, W., Yang, D., Xiao, Y.: Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1091–1100 (2020)

    Google Scholar 

  19. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  20. Pan, Z., Cai, F., Chen, W., Chen, H., de Rijke, M.: Star graph neural networks for session-based recommendation. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 1195–1204 (2020)

    Google Scholar 

  21. Pan, Z., Cai, F., Ling, Y., de Rijke, M.: Rethinking item importance in session-based recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1837–1840 (2020)

    Google Scholar 

  22. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 130–137 (2017)

    Google Scholar 

  23. Ren, P., Chen, Z., Li, J., Ren, Z., Ma, J., De Rijke, M.: RepeatNet: a repeat aware neural recommendation machine for session-based recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4806–4813 (2019)

    Google Scholar 

  24. Sanz-Cruzado, J., Macdonald, C., Ounis, I., Castells, P.: Axiomatic analysis of contact recommendation methods in social networks: an IR perspective. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 175–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_12

    Chapter  Google Scholar 

  25. Sato, M., Singh, J., Takemori, S., Zhang, Q.: Causality-aware neighborhood methods for recommender systems. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 603–618. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_40

    Chapter  Google Scholar 

  26. Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., Tang, J.: Session-based social recommendation via dynamic graph attention networks. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 555–563 (2019)

    Google Scholar 

  27. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 17–22 (2016)

    Google Scholar 

  28. Tuan, T.X., Phuong, T.M.: 3D convolutional networks for session-based recommendation with content features. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 138–146 (2017)

    Google Scholar 

  29. Twardowski, B., Zawistowski, P., Zaborowski, S.: Metric learning for session-based recommendations. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 650–665. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_43

    Chapter  Google Scholar 

  30. Wang, S., Cao, L., Wang, Y., Sheng, Q.Z., Orgun, M.A., Lian, D.: A survey on session-based recommender systems. ACM Comput. Surv. (CSUR) 54(7), 1–38 (2021)

    Article  Google Scholar 

  31. Wang, W., Yin, H., Du, X., Hua, W., Li, Y., Nguyen, Q.V.H.: Online user representation learning across heterogeneous social networks. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 545–554 (2019)

    Google Scholar 

  32. Wang, X., Hoi, S.C., Ester, M., Bu, J., Chen, C.: Learning personalized preference of strong and weak ties for social recommendation. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1601–1610 (2017)

    Google Scholar 

  33. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 346–353 (2019)

    Google Scholar 

  34. Wu, S., Zhang, M., Jiang, X., Xu, K., Wang, L.: Personalizing graph neural networks with attention mechanism for session-based recommendation. CoRR abs/1910.08887 (2019)

    Google Scholar 

  35. Xiao, L., Min, Z., Yongfeng, Z., Yiqun, L., Shaoping, M.: Learning and transferring social and item visibilities for personalized recommendation. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 337–346 (2017)

    Google Scholar 

  36. Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional generative network for next item recommendation. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 582–590 (2019)

    Google Scholar 

  37. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 793–803 (2019)

    Google Scholar 

  38. Zhong, J., Ma, C., Zhou, J., Wang, W.: PDPNN: modeling user personal dynamic preference for next point-of-interest recommendation. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 45–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_4

    Chapter  Google Scholar 

  39. Zhou, H., Tan, Q., Huang, X., Zhou, K., Wang, X.: Temporal augmented graph neural networks for session-based recommendations. In: SIGIR 2021: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1798–1802 (2021)

    Google Scholar 

  40. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the reviewers for their insightful comments. This research is supported in part by the National Key Research and Development Program of China under Grant 2018YFC0806900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipeng Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2022). Your Social Circle Affects Your Interests: Social Influence Enhanced Session-Based Recommendation. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08757-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08756-1

  • Online ISBN: 978-3-031-08757-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics