Abstract
Quantum based systems are a relatively new research area for that different modelling languages including process calculi are currently under development. Encodings are often used to compare process calculi. Quality criteria are used then to rule out trivial or meaningless encodings. In this new context of quantum based systems, it is necessary to analyse the applicability of these quality criteria and to potentially extend or adapt them. As a first step, we test the suitability of classical criteria for encodings between quantum based languages and discuss new criteria.
Concretely, we present an encoding, from a sublanguage of CQP into qCCS. We show that this encoding satisfies compositionality, name invariance (for channel and qubit names), operational correspondence, divergence reflection, success sensitiveness, and that it preserves the size of quantum registers. Then we show that there is no encoding from qCCS into CQP (or its sublanguage) that is compositional, operationally corresponding, and success sensitive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bennett, C.H., Brassard, G., Crépeau, C., Richard, J., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
Bisping, B., Nestmann, U., Peters, K.: Coupled similarity: the first 32 years. Acta Informatica, 439–463 (2019). https://doi.org/10.1007/s00236-019-00356-4
Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. ACM Trans. Program. Lang. Syst. 34(4) (2012). https://doi.org/10.1145/2400676.2400680
Gay, S.J.: Quantum programming languages: survey and bibliography. Mathe. Struct. Comput. Sci. 16(4), 581–600 (2006). https://doi.org/10.1017/S0960129506005378
Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Proceedings of SIGPLAN-SIGACT (ACM), pp. 145–157 (2005). https://doi.org/10.1145/1040305.1040318
Gorla, D.: Towards a unified approach to encodability and separation results for process calculi. Inf. Comput. 208(9), 1031–1053 (2010). https://doi.org/10.1016/j.ic.2010.05.002
Gruska, J.: Quantum computing. In: Wiley Encyclopedia of Computer Science and Engineering. Wiley (2008). https://doi.org/10.1002/9780470050118.ecse720
Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of CF, pp. 111–119 (2004). https://doi.org/10.1145/977091.977108
Kouzapas, D., Pérez, J.A., Yoshida, N.: On the relative expressiveness of higher-order session processes. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 446–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_18
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary edition). Cambridge University Press, Cambridge (2010)
Peters, K.: Comparing process calculi using encodings. In: Proceedings of EXPRESS/SOS. EPCTS, vol. 300, pp. 19–38 (2019). https://doi.org/10.4204/EPTCS.300.2
Peters, K., van Glabbeek, R.: Analysing and comparing encodability criteria. In: Crafa, S., Gebler, D. (eds.) Proceedings of EXPRESS/SOS. EPTCS, vol. 190, pp. 46–60 (2015). https://doi.org/10.4204/EPTCS.190.4
Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 310–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_18
Plotkin, G.D.: A structural approach to operational semantics. Log. Algebraic Methods Program. 60–61, 17–139 (2004)
de Riedmatten, H., Marcikic, I., Tittel, W., Zbinden, H., Collins, D., Gisin, N.: Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004)
Rieffel, E.G., Polak, W.: An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32(3), 300–335 (2000). https://doi.org/10.1145/367701.367709
Schmitt, A., Peters, K., Deng, Y.: Encodability criteria for quantum based systems (technical report). Technical report, TU Darmstadt, Germany (2022). https://doi.org/10.48550/ARXIV.2204.06068. https://arxiv.org/abs/2204.06068
Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM Trans. Comput. Log. 10(3), 19:1–19:36 (2009). https://doi.org/10.1145/1507244.1507249
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Schmitt, A., Peters, K., Deng, Y. (2022). Encodability Criteria for Quantum Based Systems. In: Mousavi, M.R., Philippou, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2022. Lecture Notes in Computer Science, vol 13273. Springer, Cham. https://doi.org/10.1007/978-3-031-08679-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-08679-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08678-6
Online ISBN: 978-3-031-08679-3
eBook Packages: Computer ScienceComputer Science (R0)