[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Compliant Microgripper for In-Vitro Biological Manipulation

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Abstract

We present a feasibility study on biological tissue and cell manipulation by a novel, multi-hinge microgripper characterized by high dexterity and complex in-plane tips displacement, while being at the same time highly compact and easy to manufacture via MEMS technology. The device was obtained by combining selective flexibility with planar fabrication technology and has been developed to propose new solutions for miniaturized, inexpensive, energy-efficient, effective and accurate manipulation at the micro-scale. The presented study consists of a direct morphological comparison with real-life cardiac and lung tissue samples, and was accomplished via in-vitro microscope observation. The results highlight the function capability of manipulating, grasping and clamping objects having a size of 50 to 150 µm, including muscle fibers, blood vessels and cells, encouraging further developments toward an in-vivo scenario with actual biological material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 175.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, W., Zhao, Y., Lin, Q.: An integrated MEMS tactile tri-axial micro-force probe sensor for minimally invasive surgery. In: IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, pp. 71–76. IEEE (2009)

    Google Scholar 

  2. Inoue, K., Arai, T., Tanikawa, T., Ohba, K.: Dexterous micromanipulation supporting cell and tissue engineering. In: IEEE International Symposium on Micro-NanoMechatronics and Human Science, pp. 197–202. IEEE (2005)

    Google Scholar 

  3. Buzzin, A., et al.: Integrated 3D microfluidic device for impedance spectroscopy in lab-on-chip systems. In: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 224–227. IEEE (2019)

    Google Scholar 

  4. Bashir, R.: BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56(11), 1565–1586 (2004)

    Article  Google Scholar 

  5. Buzzin, A., Veroli, A., de Cesare, G., Belfiore, N.P.: NEMS-technology based nano gripper for mechanic manipulation in space exploration mission. Adv. Astro. Sci. 163, 61–67 (2018)

    Google Scholar 

  6. Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromech. Microeng. 18(5), 055013 (2008)

    Article  Google Scholar 

  7. Wiklund, M., et al.: Ultrasound-induced cell-cell interaction studies in a multi-well microplate. Micromachines 5(1), 27–49 (2014)

    Article  Google Scholar 

  8. Norregaard, K., Jauffred, L., Berg-Sørensen, K., Oddershede, L.B.: Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16(25), 12614–12624 (2014)

    Article  Google Scholar 

  9. Rebello, K.J.: Applications of MEMS in surgery. IEEE Proc. 92(1), 43–55 (2004)

    Article  Google Scholar 

  10. Wierzbicki, R., et al.: Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation. Microelectron. Eng. 83(4–9), 1651–1654 (2006)

    Article  Google Scholar 

  11. Verotti, M., Dochshanov, A., Belfiore, N.P.: Compliance synthesis of CSFH MEMS-based microgrippers. J. Mech. Des. 139(2) (2017)

    Google Scholar 

  12. Bagolini, A., Ronchin, S., Bellutti, P., Chistè, M., Verotti, M., Belfiore, N.P.: Fabrication of novel MEMS microgrippers by deep reactive ion etching with metal hard mask. J. Microelectromech. Syst. 26(4), 926–934 (2017)

    Article  Google Scholar 

  13. Veroli, A., Buzzin, A., Frezza, F., De Cesare, G., Giovine, E., Belfiore, N.P.: An approach to the extreme miniaturization of rotary comb drives. Actuators 7(1), 70 (2018)

    Article  Google Scholar 

  14. Buzzin, A., Cupo, S., Giovine, E., de Cesare, G., Belfiore, N.P.: Compliant nano-pliers as a biomedical tool at the nanoscale: design, simulation and fabrication. Micromachines 11(12), 1087 (2020)

    Article  Google Scholar 

  15. Buzzin, A., Veroli, A., de Cesare, G., Giovine, E., Verotti, M., Belfiore, N.P.: A new NEMS based linear-to-rotary displacement-capacity transducer. In: IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 201–204. IEEE (2019)

    Google Scholar 

  16. Veroli, A., et al.: Development of a NEMS-technology based nano gripper. In: Ferraresi, C., Quaglia, G. (eds.) RAAD 2017. MMS, vol. 49, pp. 601–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61276-8_63

    Chapter  Google Scholar 

  17. Luisetto, I., et al.: An interdisciplinary approach to the nanomanipulation of SiO2 nanoparticles: design fabrication and feasibility. Appl. Sci. 8(12), 2645 (2018)

    Article  Google Scholar 

  18. Cecchi, R., et al.: Development of micro-grippers for tissue and cell manipulation with direct morphological comparison. Micromachines 6(11), 1710–1728 (2015)

    Article  Google Scholar 

  19. Vurchio, F., et al.: Grasping and releasing agarose micro beads in water drops. Micromachines 10(7), 436 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Buzzin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzzin, A. et al. (2023). Compliant Microgripper for In-Vitro Biological Manipulation. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics