Abstract
Document Text Summarization aims to create a short and condensed version from the original document, which transmits the main idea of the document in a few words. We formulated extractive multi-document text summarization as a combinatorial optimization problem. In which we used sentence features to select the most important content. We conduct experiments on Document Understanding Conference (DUC01) dataset using the ROUGE toolkit. Our experiments demonstrate that the proposed method contributes significant improvements over the state-of-the-art methods and heuristics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gao, S., Chen, X., Ren, Z., Zhao, D., Yan, R.: From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information (2020)
Roul, R.K., Mehrotra, S., Pungaliya, Y., Sahoo, J.K.: A new automatic multi-document text summarization using topic modeling. In: Fahrnberger, G., Gopinathan, S., Parida, L. (eds.) ICDCIT 2019. LNCS, vol. 11319, pp. 212–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05366-6_17
El-Kassas, W.S., Salama, C.R., Rafea, A.A., Mohamed, H.K.: Automatic text summarization: a comprehensive survey (2021). https://doi.org/10.1016/j.eswa.2020.113679
García-Hernández, R.A., Ledeneva, Y.: Single extractive text summarization based on a genetic algorithm. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 374–383. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38989-4_38
Mendoza, G.A.M., Ledeneva, Y., García-Hernández, R.A.: Determining the importance of sentence position for automatic text summarization. J. Intell. Fuzzy Syst. 39, 2421–2431 (2020). https://doi.org/10.3233/JIFS-179902
Over, P., Dang, H.: DUC in context. Inf. Process. Manag. 43, 1506–1520 (2007). https://doi.org/10.1016/J.IPM.2007.01.019
NIST (National Institute of Standars and Technology: TAC 2008 Summarization Track. https://tac.nist.gov/2008/summarization/. Accessed 20 July 2020
Fabbri, A.R., Li, I., She, T., Li, S., Radev, D.R.: Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model (2019)
Lins, R.D., et al.: The CNN-Corpus: A large textual corpus for single-document extractive summarization. In: Proceedings of the ACM Symposium on Document Engineering, DocEng 2019, pp. 1–10. Association for Computing Machinery, Inc, New York, New York, USA (2019). https://doi.org/10.1145/3342558.3345388
Matias, G., Ledeneva, Y., García, R.: Detección de ideas principales y composición de resúmenes en inglés, español, portugués y ruso. 60 años de investigación. Alfaomega Grupo Editor, S.A. de C.V (2020)
Ma, C., Zhang, W.E., Guo, M., Wang, H., Sheng, Q.Z.: Multi-document Summarization via Deep Learning Techniques: A Survey (2020). https://doi.org/10.1145/nnnnnnn.nnnnnnn
Hou, S.-L., et al.: A survey of text summarization approaches based on deep learning. J. Comput. Sci. Technol. 36(3), 633–663 (2021). https://doi.org/10.1007/s11390-020-0207-x
Ledeneva, Y., García-Hernández, R.A.: Generación automática de resúmenes Retos, propuestas y experimentos. Universidad Autónoma del Estado de México (2017)
Vázquez, E., García-Hernández, R.A., Ledeneva, Y.: Sentence features relevance for extractive text summarization using genetic algorithms. J. Intell. Fuzzy Syst. 35, 353–365 (2018). https://doi.org/10.3233/JIFS-169594
Neri-Mendoza, V., Ledeneva, Y., García-Hernández, R.A.: Unsupervised extractive multi-document text summarization using a genetic algorithm. J. Intell. Fuzzy Syst. 39, 2397–2408 (2020). https://doi.org/10.3233/JIFS-179900
Neri Mendoza, V., Ledeneva, Y., García-Hernández, R.A.: Abstractive multi-document text summarization using a genetic algorithm. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A., Salas, J. (eds.) MCPR 2019. LNCS, vol. 11524, pp. 422–432. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21077-9_39
Sastry, K., Goldberg, D., Kendall, G.: Chapter 4 Genetic Algorithms. (2005)
Du, K.L., Swamy, M.N.S.: Search and optimization by metaheuristics: techniques and algorithms inspired by nature (2016). https://doi.org/10.1007/978-3-319-41192-7
Borges, J.L.: La doctrina de los ciclos (2013)
Rojas-Simón, J., Ledeneva, Y., García-Hernández, R.A.: Evaluation of text summaries without human references based on the linear optimization of content metrics using a genetic algorithm. Expert Syst. Appl. 167, 113827 (2021). https://doi.org/10.1016/J.ESWA.2020.113827
Lin, C.-Y.: ROUGE: A Package for Automatic Evaluation of Summaries (2004)
Boros, E., Kantor, P.B., Neu, D.J.: A Clustering Based Approach to Creating Multi-Document Summaries (2001)
Lin, C.-Y., Hovy, E.: From single to multi-document summarization. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL 2002, p. 457 (2002). https://doi.org/10.3115/1073083.1073160
Wang, D., Zhu, S., Li, T., Gong, Y.: Multi-document summarization using sentence-based topic models. In: ACL and AFNLP, p. 297 (2010). https://doi.org/10.3115/1667583.1667675
Rojas Simón, J., Ledeneva, Y., García Hernández, R.A.: Calculating the Upper Bounds for Multi-Document Summarization using Genetic Algorithms. Comput. y Sist. 22 (2018) https://doi.org/10.13053/cys-22-1-2903
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Neri-Mendoza, V., Ledeneva, Y., García-Hernández, R.A., Hernández-Castañeda, Á. (2022). Multi-document Text Summarization Based on Genetic Algorithm and the Relevance of Sentence Features. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-07750-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07749-4
Online ISBN: 978-3-031-07750-0
eBook Packages: Computer ScienceComputer Science (R0)