[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-document Text Summarization Based on Genetic Algorithm and the Relevance of Sentence Features

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2022)

Abstract

Document Text Summarization aims to create a short and condensed version from the original document, which transmits the main idea of the document in a few words. We formulated extractive multi-document text summarization as a combinatorial optimization problem. In which we used sentence features to select the most important content. We conduct experiments on Document Understanding Conference (DUC01) dataset using the ROUGE toolkit. Our experiments demonstrate that the proposed method contributes significant improvements over the state-of-the-art methods and heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, S., Chen, X., Ren, Z., Zhao, D., Yan, R.: From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information (2020)

    Google Scholar 

  2. Roul, R.K., Mehrotra, S., Pungaliya, Y., Sahoo, J.K.: A new automatic multi-document text summarization using topic modeling. In: Fahrnberger, G., Gopinathan, S., Parida, L. (eds.) ICDCIT 2019. LNCS, vol. 11319, pp. 212–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05366-6_17

    Chapter  Google Scholar 

  3. El-Kassas, W.S., Salama, C.R., Rafea, A.A., Mohamed, H.K.: Automatic text summarization: a comprehensive survey (2021). https://doi.org/10.1016/j.eswa.2020.113679

    Article  Google Scholar 

  4. García-Hernández, R.A., Ledeneva, Y.: Single extractive text summarization based on a genetic algorithm. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 374–383. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38989-4_38

    Chapter  Google Scholar 

  5. Mendoza, G.A.M., Ledeneva, Y., García-Hernández, R.A.: Determining the importance of sentence position for automatic text summarization. J. Intell. Fuzzy Syst. 39, 2421–2431 (2020). https://doi.org/10.3233/JIFS-179902

    Article  Google Scholar 

  6. Over, P., Dang, H.: DUC in context. Inf. Process. Manag. 43, 1506–1520 (2007). https://doi.org/10.1016/J.IPM.2007.01.019

    Article  Google Scholar 

  7. NIST (National Institute of Standars and Technology: TAC 2008 Summarization Track. https://tac.nist.gov/2008/summarization/. Accessed 20 July 2020

  8. Fabbri, A.R., Li, I., She, T., Li, S., Radev, D.R.: Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model (2019)

    Google Scholar 

  9. Lins, R.D., et al.: The CNN-Corpus: A large textual corpus for single-document extractive summarization. In: Proceedings of the ACM Symposium on Document Engineering, DocEng 2019, pp. 1–10. Association for Computing Machinery, Inc, New York, New York, USA (2019). https://doi.org/10.1145/3342558.3345388

  10. Matias, G., Ledeneva, Y., García, R.: Detección de ideas principales y composición de resúmenes en inglés, español, portugués y ruso. 60 años de investigación. Alfaomega Grupo Editor, S.A. de C.V (2020)

    Google Scholar 

  11. Ma, C., Zhang, W.E., Guo, M., Wang, H., Sheng, Q.Z.: Multi-document Summarization via Deep Learning Techniques: A Survey (2020). https://doi.org/10.1145/nnnnnnn.nnnnnnn

  12. Hou, S.-L., et al.: A survey of text summarization approaches based on deep learning. J. Comput. Sci. Technol. 36(3), 633–663 (2021). https://doi.org/10.1007/s11390-020-0207-x

    Article  Google Scholar 

  13. Ledeneva, Y., García-Hernández, R.A.: Generación automática de resúmenes Retos, propuestas y experimentos. Universidad Autónoma del Estado de México (2017)

    Google Scholar 

  14. Vázquez, E., García-Hernández, R.A., Ledeneva, Y.: Sentence features relevance for extractive text summarization using genetic algorithms. J. Intell. Fuzzy Syst. 35, 353–365 (2018). https://doi.org/10.3233/JIFS-169594

    Article  Google Scholar 

  15. Neri-Mendoza, V., Ledeneva, Y., García-Hernández, R.A.: Unsupervised extractive multi-document text summarization using a genetic algorithm. J. Intell. Fuzzy Syst. 39, 2397–2408 (2020). https://doi.org/10.3233/JIFS-179900

    Article  Google Scholar 

  16. Neri Mendoza, V., Ledeneva, Y., García-Hernández, R.A.: Abstractive multi-document text summarization using a genetic algorithm. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A., Salas, J. (eds.) MCPR 2019. LNCS, vol. 11524, pp. 422–432. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21077-9_39

    Chapter  Google Scholar 

  17. Sastry, K., Goldberg, D., Kendall, G.: Chapter 4 Genetic Algorithms. (2005)

    Google Scholar 

  18. Du, K.L., Swamy, M.N.S.: Search and optimization by metaheuristics: techniques and algorithms inspired by nature (2016). https://doi.org/10.1007/978-3-319-41192-7

  19. Borges, J.L.: La doctrina de los ciclos (2013)

    Google Scholar 

  20. Rojas-Simón, J., Ledeneva, Y., García-Hernández, R.A.: Evaluation of text summaries without human references based on the linear optimization of content metrics using a genetic algorithm. Expert Syst. Appl. 167, 113827 (2021). https://doi.org/10.1016/J.ESWA.2020.113827

    Article  Google Scholar 

  21. Lin, C.-Y.: ROUGE: A Package for Automatic Evaluation of Summaries (2004)

    Google Scholar 

  22. Boros, E., Kantor, P.B., Neu, D.J.: A Clustering Based Approach to Creating Multi-Document Summaries (2001)

    Google Scholar 

  23. Lin, C.-Y., Hovy, E.: From single to multi-document summarization. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL 2002, p. 457 (2002). https://doi.org/10.3115/1073083.1073160

  24. Wang, D., Zhu, S., Li, T., Gong, Y.: Multi-document summarization using sentence-based topic models. In: ACL and AFNLP, p. 297 (2010). https://doi.org/10.3115/1667583.1667675

  25. Rojas Simón, J., Ledeneva, Y., García Hernández, R.A.: Calculating the Upper Bounds for Multi-Document Summarization using Genetic Algorithms. Comput. y Sist. 22 (2018) https://doi.org/10.13053/cys-22-1-2903

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Verónica Neri-Mendoza or Yulia Ledeneva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neri-Mendoza, V., Ledeneva, Y., García-Hernández, R.A., Hernández-Castañeda, Á. (2022). Multi-document Text Summarization Based on Genetic Algorithm and the Relevance of Sentence Features. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07750-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07749-4

  • Online ISBN: 978-3-031-07750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics