[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Blockchain in a Nutshell

  • Chapter
  • First Online:
Handbook on Blockchain

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 194))

Abstract

Blockchain enables a digital society where people can contribute, collaborate, and transact without having to second-guess trust and transparency. It is the technology behind the success of Bitcoin, Ethereum, and many disruptive applications and platforms that have positive impact in numerous sectors, including finance, education, health care, environment, transportation, and philanthropy, to name a few. This chapter provides a friendly description of essential concepts, mathematics, and algorithms that lay the foundation for blockchain technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 129.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Comparing based on blockchain length (the number of blocks in the blockchain) is adopted in most blockchain networks, but other comparison criteria have also been explored, for example, choosing the “heaviest” blockchain copy as the correct one, where “heaviness” is a weighted generalization of the length.

  2. 2.

    This problem is described on this page: https://eth.wiki/sharding/Sharding-FAQs.

  3. 3.

    https://polygon.technology.

  4. 4.

    https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/.

  5. 5.

    https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/.

  6. 6.

    https://www.optimism.io.

  7. 7.

    https://offchainlabs.com/.

  8. 8.

    https://dydx.exchange.

  9. 9.

    https://zks.org.

  10. 10.

    https://multichain.org/.

  11. 11.

    https://www.parity.io/technologies/substrate/.

References

  1. Back, A.: Hashcash-a denial of service counter-measure (2002). http://www.hashcash.org/papers/hashcash.pdf

  2. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged sidechains (2014). https://www.peercoin.net/whitepapers/peercoin-paper.pdf

  3. Baird, L., Harmon, M., Madsen, P.: Hedera: A public hashgraph network and governing council (2020). https://hedera.com/hh_whitepaper_v2.1-20200815.pdf

  4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: J. Simon (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, pp. 103–112. ACM (1988). https://doi.org/10.1145/62212.62222

  5. Burdges, J., Cevallos, A., Czaban, P., Habermeier, R., Hosseini, S., Lama, F., Alper, H.K., Luo, X., Shirazi, F., Stewart, A., Wood, G.: Overview of polkadot and its design considerations (2020). CoRR arXiv:2005.13456

  6. Buterin, V.: Ethereum: a next-generation smart contract and decentralized application platform (2014). https://ethereum.org/en/whitepaper

  7. Buterin, V.: An incomplete guide to rollups (2021). https://vitalik.ca/general/2021/01/05/rollup.html

  8. Buterin, V.: Why sharding is great: demystifying the technical properties (2021). https://vitalik.ca/general/2021/04/07/sharding.html

  9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI’99, pp. 173–186. USENIX Association, USA (1999)

    Google Scholar 

  10. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001

  11. Chen, T., Lu, H., Kunpittaya, T., Luo, A.: A review of zk-snarks (2022)

    Google Scholar 

  12. Damgård, I.: Commitment schemes and zero-knowledge protocols. In: I. Damgård (ed.) Lectures on Data Security, Modern Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998. Lecture Notes in Computer Science, vol. 1561, pp. 63–86. Springer (1998). DOI https://doi.org/10.1007/3-540-48969-X_3

  13. Deloitte: Deloitte’s 2020 global blockchain survey (2020). https://www2.deloitte.com/mt/en/pages/technology/articles/2020-global-blockchain-survey.html

  14. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Proceedings of the 12th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’92, pp. 139–147. Springer, Berlin, Heidelberg (1992)

    Google Scholar 

  15. Ethworks: Zero-knowledge blockchain scalability (2018). https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf

  16. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018). https://doi.org/10.1145/3212998

  17. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, SOSP’17. Association for Computing Machinery, pp. 51–68. New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132757

  18. Goodman, L.M.: Tezos: a self-amending crypto-ledger (white paper) (2014). https://tezos.com/whitepaper.pdf

  19. Grunspan, C., Pérez-Marco, R.: The mathematics of Bitcoin (2020). CoRR arXiv:2003.00001

  20. Hafid, A., Hafid, A.S., Samih, M.: Scaling blockchains: a comprehensive survey. IEEE Access 8, 125244–125262 (2020). https://doi.org/10.1109/ACCESS.2020.3007251

    Article  Google Scholar 

  21. Hankerson, D., Menezes, A.: Elliptic Curve Cryptography, pp. 397. Springer US, Boston, MA (2011)

    Google Scholar 

  22. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC’18. Association for Computing Machinery, pp. 245–254. New York, NY, USA (2018). https://doi.org/10.1145/3212734.3212736

  23. Iansiti, M., Lakhani, K.: The truth about blockchain. Harv. Bus. Rev. 95, 118–127 (2017)

    Google Scholar 

  24. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake (2012). https://www.peercoin.net/whitepapers/peercoin-paper.pdf

  25. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Konstantopoulos, G.: Plasma cash: towards more efficient plasma constructions (2019). https://doi.org/10.48550/ARXIV.1911.12095. arXiv:1911.12095

  27. Kwon, J.: Tendermint: consensus without mining (2014). https://tendermint.com/static/docs/tendermint.pdf

  28. Kwon, J., Buchman, E.: A network of distributed ledgers (2016). https://v1.cosmos.network/resources/whitepaper

  29. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/357172.357176

  30. Lan, R., Upadhyaya, G., Tse, S., Zamani, M.: Horizon: a gas-efficient, trustless bridge for cross-chain transactions (2021). https://doi.org/10.48550/ARXIV.2101.06000. arXiv:2101.06000

  31. Lin, H.Y., Tzeng, W.G.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Proceedings of the Third International Conference on Applied Cryptography and Network Security, ACNS’05, pp. 456–466. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  32. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the xor metric. Peer-to-Peer Systems, pp. 53–65 (2002)

    Google Scholar 

  33. Merkle, R.C.: A digital signature based on a conventional encryption function. CRYPTO’87, pp. 369–378. Springer, Berlin, Heidelberg (1987)

    Google Scholar 

  34. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Advances in Cryptology–CRYPTO’85 Proceedings, pp. 417–426. Springer, Berlin Heidelberg (1986)

    Google Scholar 

  35. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  36. Nguyen, Q., Cronje, A., Kong, M., Lysenko, E., Guzev, A.: Lachesis: Scalable asynchronous bft on dag streams (2021). https://doi.org/10.48550/ARXIV.2108.01900. arXiv:2108.01900

  37. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017). https://plasma.io/plasma.pdf

  38. Poon, J., Dryja, T.: The Bitcoin lightning network: Scalable off-chain instant payments (2017). https://lightning.network/lightning-network-paper.pdf

  39. PwC: Time for trust: The trillion-dollar reason to rethink blockchain pwc projected (2020). https://www.pwc.com/timefortrust

  40. Rocket, T., Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.: Scalable and probabilistic leaderless BFT consensus through metastability (2019). CoRR arXiv:1906.08936

  41. Sguanci, C., Spatafora, R., Vergani, A.: Layer 2 blockchain scaling: a survey (2021). arXiv:2107.10881

  42. Shi, E.: Foundations of distributed consensus and blockchains (book manuscript) (2020). https://www.distributedconsensus.net

  43. Szabo, N.: The idea of smart contracts (1997). https://nakamotoinstitute.org/the-idea-of-smart-contracts

  44. Wang, D., Zhou, J., Wang, A.: Loopring: A decentralized token exchange protocol (2018). https://loopring.org/resources/en_whitepaper.pdf

  45. Wang, T., Zhao, C., Yang, Q., Zhang, S., Liew, S.C.: Ethna: Analyzing the underlying peer-to-peer network of ethereum blockchain. IEEE Trans. Netw. Sci. Eng. 8(3), 2131–2146 (2021). https://doi.org/10.1109/TNSE.2021.3078181

  46. Wensley, J.H.: Sift: software implemented fault tolerance. In: Fall Joint Computer Conference, Part I, AFIPS’72 (Fall, part I). Association for Computing Machinery, pp. 243–253. New York, NY, USA (1972). https://doi.org/10.1145/1479992.1480025

  47. Wood, G.: Polkadot white paper (2016). https://polkadot.network/PolkaDotPaper.pdf

  48. Yakovenko, A.: Solana: A new architecture for a high performance blockchain v0.8.13 (2017). https://solana.com/solana-whitepaper.pdf

Download references

Acknowledgements

Duc A. Tran’s work for this chapter was partially funded by Vingroup Joint Stock Company and supported by Vingroup Innovation Foundation (VINIF) under project code VINIF.2021.DA00128. Bhaskar Krishnamachari’s work was supported in part by the USC Viterbi Center for Cyberphysical Systems and the Internet of Things.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc A. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, D.A., Krishnamachari, B. (2022). Blockchain in a Nutshell. In: Tran, D.A., Thai, M.T., Krishnamachari, B. (eds) Handbook on Blockchain. Springer Optimization and Its Applications, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-031-07535-3_1

Download citation

Publish with us

Policies and ethics