Abstract
Blockchain enables a digital society where people can contribute, collaborate, and transact without having to second-guess trust and transparency. It is the technology behind the success of Bitcoin, Ethereum, and many disruptive applications and platforms that have positive impact in numerous sectors, including finance, education, health care, environment, transportation, and philanthropy, to name a few. This chapter provides a friendly description of essential concepts, mathematics, and algorithms that lay the foundation for blockchain technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Comparing based on blockchain length (the number of blocks in the blockchain) is adopted in most blockchain networks, but other comparison criteria have also been explored, for example, choosing the “heaviest” blockchain copy as the correct one, where “heaviness” is a weighted generalization of the length.
- 2.
This problem is described on this page: https://eth.wiki/sharding/Sharding-FAQs.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
References
Back, A.: Hashcash-a denial of service counter-measure (2002). http://www.hashcash.org/papers/hashcash.pdf
Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged sidechains (2014). https://www.peercoin.net/whitepapers/peercoin-paper.pdf
Baird, L., Harmon, M., Madsen, P.: Hedera: A public hashgraph network and governing council (2020). https://hedera.com/hh_whitepaper_v2.1-20200815.pdf
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: J. Simon (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, pp. 103–112. ACM (1988). https://doi.org/10.1145/62212.62222
Burdges, J., Cevallos, A., Czaban, P., Habermeier, R., Hosseini, S., Lama, F., Alper, H.K., Luo, X., Shirazi, F., Stewart, A., Wood, G.: Overview of polkadot and its design considerations (2020). CoRR arXiv:2005.13456
Buterin, V.: Ethereum: a next-generation smart contract and decentralized application platform (2014). https://ethereum.org/en/whitepaper
Buterin, V.: An incomplete guide to rollups (2021). https://vitalik.ca/general/2021/01/05/rollup.html
Buterin, V.: Why sharding is great: demystifying the technical properties (2021). https://vitalik.ca/general/2021/04/07/sharding.html
Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI’99, pp. 173–186. USENIX Association, USA (1999)
Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001
Chen, T., Lu, H., Kunpittaya, T., Luo, A.: A review of zk-snarks (2022)
Damgård, I.: Commitment schemes and zero-knowledge protocols. In: I. Damgård (ed.) Lectures on Data Security, Modern Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998. Lecture Notes in Computer Science, vol. 1561, pp. 63–86. Springer (1998). DOI https://doi.org/10.1007/3-540-48969-X_3
Deloitte: Deloitte’s 2020 global blockchain survey (2020). https://www2.deloitte.com/mt/en/pages/technology/articles/2020-global-blockchain-survey.html
Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Proceedings of the 12th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’92, pp. 139–147. Springer, Berlin, Heidelberg (1992)
Ethworks: Zero-knowledge blockchain scalability (2018). https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf
Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018). https://doi.org/10.1145/3212998
Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, SOSP’17. Association for Computing Machinery, pp. 51–68. New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132757
Goodman, L.M.: Tezos: a self-amending crypto-ledger (white paper) (2014). https://tezos.com/whitepaper.pdf
Grunspan, C., Pérez-Marco, R.: The mathematics of Bitcoin (2020). CoRR arXiv:2003.00001
Hafid, A., Hafid, A.S., Samih, M.: Scaling blockchains: a comprehensive survey. IEEE Access 8, 125244–125262 (2020). https://doi.org/10.1109/ACCESS.2020.3007251
Hankerson, D., Menezes, A.: Elliptic Curve Cryptography, pp. 397. Springer US, Boston, MA (2011)
Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC’18. Association for Computing Machinery, pp. 245–254. New York, NY, USA (2018). https://doi.org/10.1145/3212734.3212736
Iansiti, M., Lakhani, K.: The truth about blockchain. Harv. Bus. Rev. 95, 118–127 (2017)
King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake (2012). https://www.peercoin.net/whitepapers/peercoin-paper.pdf
Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
Konstantopoulos, G.: Plasma cash: towards more efficient plasma constructions (2019). https://doi.org/10.48550/ARXIV.1911.12095. arXiv:1911.12095
Kwon, J.: Tendermint: consensus without mining (2014). https://tendermint.com/static/docs/tendermint.pdf
Kwon, J., Buchman, E.: A network of distributed ledgers (2016). https://v1.cosmos.network/resources/whitepaper
Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/357172.357176
Lan, R., Upadhyaya, G., Tse, S., Zamani, M.: Horizon: a gas-efficient, trustless bridge for cross-chain transactions (2021). https://doi.org/10.48550/ARXIV.2101.06000. arXiv:2101.06000
Lin, H.Y., Tzeng, W.G.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Proceedings of the Third International Conference on Applied Cryptography and Network Security, ACNS’05, pp. 456–466. Springer, Berlin, Heidelberg (2005)
Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the xor metric. Peer-to-Peer Systems, pp. 53–65 (2002)
Merkle, R.C.: A digital signature based on a conventional encryption function. CRYPTO’87, pp. 369–378. Springer, Berlin, Heidelberg (1987)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Advances in Cryptology–CRYPTO’85 Proceedings, pp. 417–426. Springer, Berlin Heidelberg (1986)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf
Nguyen, Q., Cronje, A., Kong, M., Lysenko, E., Guzev, A.: Lachesis: Scalable asynchronous bft on dag streams (2021). https://doi.org/10.48550/ARXIV.2108.01900. arXiv:2108.01900
Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017). https://plasma.io/plasma.pdf
Poon, J., Dryja, T.: The Bitcoin lightning network: Scalable off-chain instant payments (2017). https://lightning.network/lightning-network-paper.pdf
PwC: Time for trust: The trillion-dollar reason to rethink blockchain pwc projected (2020). https://www.pwc.com/timefortrust
Rocket, T., Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.: Scalable and probabilistic leaderless BFT consensus through metastability (2019). CoRR arXiv:1906.08936
Sguanci, C., Spatafora, R., Vergani, A.: Layer 2 blockchain scaling: a survey (2021). arXiv:2107.10881
Shi, E.: Foundations of distributed consensus and blockchains (book manuscript) (2020). https://www.distributedconsensus.net
Szabo, N.: The idea of smart contracts (1997). https://nakamotoinstitute.org/the-idea-of-smart-contracts
Wang, D., Zhou, J., Wang, A.: Loopring: A decentralized token exchange protocol (2018). https://loopring.org/resources/en_whitepaper.pdf
Wang, T., Zhao, C., Yang, Q., Zhang, S., Liew, S.C.: Ethna: Analyzing the underlying peer-to-peer network of ethereum blockchain. IEEE Trans. Netw. Sci. Eng. 8(3), 2131–2146 (2021). https://doi.org/10.1109/TNSE.2021.3078181
Wensley, J.H.: Sift: software implemented fault tolerance. In: Fall Joint Computer Conference, Part I, AFIPS’72 (Fall, part I). Association for Computing Machinery, pp. 243–253. New York, NY, USA (1972). https://doi.org/10.1145/1479992.1480025
Wood, G.: Polkadot white paper (2016). https://polkadot.network/PolkaDotPaper.pdf
Yakovenko, A.: Solana: A new architecture for a high performance blockchain v0.8.13 (2017). https://solana.com/solana-whitepaper.pdf
Acknowledgements
Duc A. Tran’s work for this chapter was partially funded by Vingroup Joint Stock Company and supported by Vingroup Innovation Foundation (VINIF) under project code VINIF.2021.DA00128. Bhaskar Krishnamachari’s work was supported in part by the USC Viterbi Center for Cyberphysical Systems and the Internet of Things.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Tran, D.A., Krishnamachari, B. (2022). Blockchain in a Nutshell. In: Tran, D.A., Thai, M.T., Krishnamachari, B. (eds) Handbook on Blockchain. Springer Optimization and Its Applications, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-031-07535-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-07535-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07534-6
Online ISBN: 978-3-031-07535-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)