[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computational Analysis of Musical Structures Based on Morphological Filters

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13267))

Included in the following conference series:

  • 815 Accesses

Abstract

This paper deals with the computational analysis of musical structures by focusing on the use of morphological filters. We first propose to generalize the notion of melodic contour to a chord sequence with the chord contour, representing some formal intervallic relations between two given chords. By defining a semi-metric, we compute the self-distance matrix of a chord contour sequence. This method allows generating a self-distance matrix for symbolic music representations. Self-distance matrices are used in the analysis of musical structures because blocks around the diagonal provide structural information on a musical piece. The main contribution of this paper comes from the analysis of these matrices based on mathematical morphology. Morphological filters are used to homogenize and detect regions in the self-distance matrices. Specifically, the opening operation has been successfully applied to reveal the blocks around the diagonal because it removes small details such as high local values and reduces all blocks around the diagonal to a zero value. Moreover, by varying the size of the morphological filter, it is possible to detect musical structures at different scales. A large opening filter identifies the main global parts of the piece, while a smaller one finds shorter musical sections. We discuss some examples that demonstrate the usefulness of this approach to detect the structures of a musical piece and its novelty within the field of symbolic music information research.

This work was partly supported by the chair of I. Bloch in Artificial Intelligence (Sorbonne Université and SCAI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, C.R.: Melodic contour typology. Ethnomusicology 20(2), 179–215 (1976)

    Article  Google Scholar 

  2. Agon, C., Andreatta, M., Atif, J., Bloch, I., Mascarade, P.: Musical descriptions based on formal concept analysis and mathematical morphology. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 105–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_9

    Chapter  Google Scholar 

  3. Anagnostopoulou, C., Giraud, M., Poulakis, N.: Melodic contour representations in the analysis of children’s songs. In: van Kranenburg, P., Anagnostopoulou, C., Volk, A. (eds.) 3rd International Workshop on Folk Music Analysis, pp. 40–43. Amsterdam, Netherlands (2013)

    Google Scholar 

  4. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–944. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_14

  5. Buteau, C., Mazzola, G.: Motivic analysis according to Rudolph Réti: formalization by a topological model. J. Math. Music 2(3), 117–134 (2008)

    Article  Google Scholar 

  6. Dowling, W.J.: Melodic contour in hearing and remembering melodies. In: Aiello, R., Sloboda, J.A. (eds.) Musical Perceptions, pp. 173–190. Oxford University Press, Oxford (1994)

    Google Scholar 

  7. Foote, J.: Visualizing music and audio using self-similarity. In: Seventh ACM International Conference on Multimedia (Part 1), pp. 77–80 (1999)

    Google Scholar 

  8. Foote, J.: Automatic audio segmentation using a measure of audio novelty. In: IEEE International Conference on Multimedia and Expo, ICME 2000. Latest Advances in the Fast Changing World of Multimedia, vol. 1, pp. 452–455 (2000)

    Google Scholar 

  9. Hadwiger, H.: Minkowskische Addition und Subtraktion beliebiger Punkt-mengen und die Theoreme von Erhard Schmidt. Mathematische Zeitschrift 53, 210–218 (1950)

    Article  Google Scholar 

  10. Heijmans, H.: Morphological Image Operators. Advances in Electronics and Electron Physics: Supplements. Academic Press (1994)

    Google Scholar 

  11. Heijmans, H., Ronse, C.: The algebraic basis of mathematical morphology I. dilations and erosions. Comput. Vis. Graph. Image Process. 50(3), 245–295 (1990)

    Google Scholar 

  12. Karvonen, M., Laitinen, M., Lemström, K., Vikman, J.: Error-tolerant content-based music-retrieval with mathematical morphology. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.) CMMR 2010. LNCS, vol. 6684, pp. 321–337. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23126-1_20

    Chapter  Google Scholar 

  13. Karvonen, M., Lemström, K.: Using mathematical morphology for geometric music information retrieval. In: International Workshop on Machine Learning and Music, MML 2008, Helsinki, Finland (2008)

    Google Scholar 

  14. Lascabettes, P., Bloch, I., Agon, C.: Analyse de représentations spatiales de la musique par des opérateurs simples de morphologie mathématique. Journées d’Informatique Musicale (2020)

    Google Scholar 

  15. Lu, L., Wang, M., Zhang, H.J.: Repeating pattern discovery and structure analysis from acoustic music data. In: 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 275–282 (2004)

    Google Scholar 

  16. Marvin, E.W., Laprade, P.A.: Relating musical contours: extensions of a theory for contour. J. Music Theory 31(2), 225–267 (1987)

    Article  Google Scholar 

  17. Minkowski, H.: Volumen und Oberfläche. Mathematische Annalen 57, 447–495 (1903)

    Article  Google Scholar 

  18. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. ISTE-Wiley (2010)

    Google Scholar 

  19. Paulus, J., Müller, M., Klapuri, A.: State of the art report: audio-based music structure analysis. In: ISMIR, Utrecht, pp. 625–636 (2010)

    Google Scholar 

  20. Quinn, I.: The combinatorial model of pitch contour. Music Percept.: Interdiscip. J. 16(4), 439–456 (1999)

    Article  Google Scholar 

  21. Ronse, C., Heijmans, H.: The algebraic basis of mathematical morphology: II. openings and closings. CVGIP: Image Underst. 54(1), 74–97 (1991)

    Google Scholar 

  22. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., London (1982)

    Google Scholar 

  23. Trehub, S.E., Bull, D., Thorpe, L.A.: Infants’ perception of melodies: the role of melodic contour. Child Dev. 55(3), 821–830 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Lascabettes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lascabettes, P., Agon, C., Andreatta, M., Bloch, I. (2022). Computational Analysis of Musical Structures Based on Morphological Filters. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics