Abstract
The relative succinctness and ease of manipulation of different languages to express Boolean constraints is studied in knowledge compilation, and impacts areas including formal verification and circuit design. We give the first analysis of Disjoint Support Decomposition Binary Decision Diagrams (DSDBDD), introduced by Bertacco, which achieves a more succinct representation than Binary DDs by exploiting Ashenhurst Decompositions. Our main result is that DSDBDDs can be exponentially smaller than BDDs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
No name has been given to this diagram, so we use DSDBDD in accordance with conventions in the literature.
References
Al-Rabadi, A.N., Perkowski, M., Zwick, M.: A comparison of modified reconstructability analysis and Ashenhurst-Curtis decomposition of Boolean functions, Kybernetes (2004)
Amarú, L., Gaillardon, P.-E., De Micheli, G.: BDS-MAJ: A BDD-based logic synthesis tool exploiting majority logic decomposition. In: Proceedings of the 50th Annual Design Automation Conference, pp. 1–6 (2013)
Ashenhurst, R.L.: The decomposition of switching functions. In: Proceedings of an International Symposium on the Theory of Switching, April 1957 (1957)
Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
Bertacco, V.: The disjunctive decomposition of logic functions. In: Proceedings of the International Conference on Computer-Aided Design (ICCAD 1997), November 1997, pp. 78–82 (1997)
Bertacco, V., Damiani, M.: Boolean function representation based on disjoint-support decompositions. In: Proceedings International Conference on Computer Design. VLSI in Computers and Processors, pp. 27–32. IEEE (1996)
Bollig, B., Buttkus, M.: On the relative succinctness of sentential decision diagrams. Theory Comput. Syst. 63(6), 1250–1277 (2019)
Bollig, B., Farenholtz, M.: On the relation between structured d-DNNFs and SDDs. Theory Comput. Syst. 65(2), 274–295 (2021)
Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)
Bova, S.: SDDs are exponentially more succinct than OBDDs. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
Randal, E.: Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)
Bryant, R.E.: Chain reduction for binary and zero-suppressed decision diagrams. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 81–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_5
Dal, G.H., Laarman, A.W., Hommersom, A., Lucas, P.J.F.: A compositional approach to probabilistic knowledge compilation. Int. J. Approximate Reasoning 138, 38–66 (2021)
Damiani, M., Bertacco, V.: Finding complex disjunctive decompositions of logic functions. In: Proceedings of the International Workshop on Logic & Synthesis, pp. 478–483 (1998)
Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Two, pp. 819–826. AAAI Press (2011)
Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)
Gergov, J., Meinel, C.: Efficient Boolean manipulation with OBDDs can be extended to FBDDs. Universität Trier, Mathematik/Informatik, Forschungsbericht, pp. 93–12 (1993)
Hong, X., Ying, M., Feng, Y., Zhou, X., Li, S.: Approximate equivalence checking of noisy quantum circuits. arXiv preprint arXiv:2103.11595 (2021)
Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)
Mateescu, R., Dechter, R., Marinescu, R.: And/or multi-valued decision diagrams (AOMDDs) for graphical models. J. Artif. Intelli. Res. 33, 465–519 (2008)
Matsunaga, Y.: An exact and efficient algorithm for disjunctive decomposition. In: Proceedings of Synthesis and System Integration of Mixed Technologies (SASIMI 1998, Japan), October 1998
McMillan, K.L.: Symbolic model checking: an approach to the state explosion problem, Ph.D. thesis, 1992, UMI No. GAX92-24209
Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–277. IEEE (1993)
Minato, S.: Finding simple disjoint decompositions in frequent itemset data using zero-suppressed BDD. In: Proceedings of IEEE ICDM 2005 Workshop on Computational Intelligence in Data Mining, pp. 3–11 (2005)
Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs: efficient quantum function representation and manipulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 86–99 (2015)
Plaza, S., Bertacco, V.: Boolean operations on decomposed functions. In: Proceedings of the 24th International Workshop on Logic & Synthesis, pp. 310–317 (2005)
Plaza, S., Bertacco, V.: STACCATO: disjoint support decompositions from BDDs through symbolic kernels. In: Proceedings of the 2005 Asia and South Pacific Design Automation Conference, pp. 276–279 (2005)
Sasao, T.: FPGA design by generalized functional decomposition. In: Sasao, T. (ed.) Logic Synthesis and Optimization, The Kluwer International Series in Engineering and Computer Science, vol. 212, pp. 233–258. Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-3154-8_11
Sasao, T., Matsuura, M.: DECOMPOS: an integrated system for functional decomposition. In: International Workshop on Logic Synthesis, vol. 1998, pp. 471–477 (1998)
Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible circuit design. J. Multiple Valued Log. Soft Comput. 18(1), 55–65 (2012)
Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large reversible functions using binary decision diagrams. J. Symb. Comput. 73, 1–26 (2016)
Van den Broeck, G., Darwiche, A.: On the role of canonicity in knowledge compilation. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: combining reduction rules from different decision diagram types. In: Proceedings of the 17th Conference on Formal Methods in Computer-Aided Design, FMCAD Inc, pp. 108–115 (2017)
Viamontes, G.F., Rajagopalan, M., Markov, I.L., Hayes, J.P.: Gate-level simulation of quantum circuits. In: Proceedings of the 2003 Asia and South Pacific Design Automation Conference, pp. 295–301 (2003)
Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD a decision diagram for simulation of quantum computing including stabilizer states, arXiv preprint arXiv:2108.00931 (2021)
Vinkhuijzen, L., Laarman, A.: Symbolic model checking with sentential decision diagrams. In: Pang, J., Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp. 124–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2_8
Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275 (2009)
Zulehner, A., Wille, R.: Improving synthesis of reversible circuits: exploiting redundancies in paths and nodes of QMDDs. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 232–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59936-6_18
Acknowledgements
The authors wish to thank Holger Hoos for insightful discussions and for many useful comments on drafts of this paper, and the anonymous NFM reviewers for helpful feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Vinkhuijzen, L., Laarman, A. (2022). The Power of Disjoint Support Decompositions in Decision Diagrams. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds) NASA Formal Methods. NFM 2022. Lecture Notes in Computer Science, vol 13260. Springer, Cham. https://doi.org/10.1007/978-3-031-06773-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-06773-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06772-3
Online ISBN: 978-3-031-06773-0
eBook Packages: Computer ScienceComputer Science (R0)