[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Power of Disjoint Support Decompositions in Decision Diagrams

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13260))

Included in the following conference series:

Abstract

The relative succinctness and ease of manipulation of different languages to express Boolean constraints is studied in knowledge compilation, and impacts areas including formal verification and circuit design. We give the first analysis of Disjoint Support Decomposition Binary Decision Diagrams (DSDBDD), introduced by Bertacco, which achieves a more succinct representation than Binary DDs by exploiting Ashenhurst Decompositions. Our main result is that DSDBDDs can be exponentially smaller than BDDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    No name has been given to this diagram, so we use DSDBDD in accordance with conventions in the literature.

References

  1. Al-Rabadi, A.N., Perkowski, M., Zwick, M.: A comparison of modified reconstructability analysis and Ashenhurst-Curtis decomposition of Boolean functions, Kybernetes (2004)

    Google Scholar 

  2. Amarú, L., Gaillardon, P.-E., De Micheli, G.: BDS-MAJ: A BDD-based logic synthesis tool exploiting majority logic decomposition. In: Proceedings of the 50th Annual Design Automation Conference, pp. 1–6 (2013)

    Google Scholar 

  3. Ashenhurst, R.L.: The decomposition of switching functions. In: Proceedings of an International Symposium on the Theory of Switching, April 1957 (1957)

    Google Scholar 

  4. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Bertacco, V.: The disjunctive decomposition of logic functions. In: Proceedings of the International Conference on Computer-Aided Design (ICCAD 1997), November 1997, pp. 78–82 (1997)

    Google Scholar 

  6. Bertacco, V., Damiani, M.: Boolean function representation based on disjoint-support decompositions. In: Proceedings International Conference on Computer Design. VLSI in Computers and Processors, pp. 27–32. IEEE (1996)

    Google Scholar 

  7. Bollig, B., Buttkus, M.: On the relative succinctness of sentential decision diagrams. Theory Comput. Syst. 63(6), 1250–1277 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bollig, B., Farenholtz, M.: On the relation between structured d-DNNFs and SDDs. Theory Comput. Syst. 65(2), 274–295 (2021)

    Article  MathSciNet  Google Scholar 

  9. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)

    Article  Google Scholar 

  10. Bova, S.: SDDs are exponentially more succinct than OBDDs. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  11. Randal, E.: Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)

    MATH  Google Scholar 

  12. Bryant, R.E.: Chain reduction for binary and zero-suppressed decision diagrams. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 81–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_5

    Chapter  Google Scholar 

  13. Dal, G.H., Laarman, A.W., Hommersom, A., Lucas, P.J.F.: A compositional approach to probabilistic knowledge compilation. Int. J. Approximate Reasoning 138, 38–66 (2021)

    Article  MathSciNet  Google Scholar 

  14. Damiani, M., Bertacco, V.: Finding complex disjunctive decompositions of logic functions. In: Proceedings of the International Workshop on Logic & Synthesis, pp. 478–483 (1998)

    Google Scholar 

  15. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Two, pp. 819–826. AAAI Press (2011)

    Google Scholar 

  16. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)

    Article  MathSciNet  Google Scholar 

  17. Gergov, J., Meinel, C.: Efficient Boolean manipulation with OBDDs can be extended to FBDDs. Universität Trier, Mathematik/Informatik, Forschungsbericht, pp. 93–12 (1993)

    Google Scholar 

  18. Hong, X., Ying, M., Feng, Y., Zhou, X., Li, S.: Approximate equivalence checking of noisy quantum circuits. arXiv preprint arXiv:2103.11595 (2021)

  19. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)

    Article  MathSciNet  Google Scholar 

  20. Mateescu, R., Dechter, R., Marinescu, R.: And/or multi-valued decision diagrams (AOMDDs) for graphical models. J. Artif. Intelli. Res. 33, 465–519 (2008)

    Article  MathSciNet  Google Scholar 

  21. Matsunaga, Y.: An exact and efficient algorithm for disjunctive decomposition. In: Proceedings of Synthesis and System Integration of Mixed Technologies (SASIMI 1998, Japan), October 1998

    Google Scholar 

  22. McMillan, K.L.: Symbolic model checking: an approach to the state explosion problem, Ph.D. thesis, 1992, UMI No. GAX92-24209

    Google Scholar 

  23. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–277. IEEE (1993)

    Google Scholar 

  24. Minato, S.: Finding simple disjoint decompositions in frequent itemset data using zero-suppressed BDD. In: Proceedings of IEEE ICDM 2005 Workshop on Computational Intelligence in Data Mining, pp. 3–11 (2005)

    Google Scholar 

  25. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs: efficient quantum function representation and manipulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 86–99 (2015)

    Article  Google Scholar 

  26. Plaza, S., Bertacco, V.: Boolean operations on decomposed functions. In: Proceedings of the 24th International Workshop on Logic & Synthesis, pp. 310–317 (2005)

    Google Scholar 

  27. Plaza, S., Bertacco, V.: STACCATO: disjoint support decompositions from BDDs through symbolic kernels. In: Proceedings of the 2005 Asia and South Pacific Design Automation Conference, pp. 276–279 (2005)

    Google Scholar 

  28. Sasao, T.: FPGA design by generalized functional decomposition. In: Sasao, T. (ed.) Logic Synthesis and Optimization, The Kluwer International Series in Engineering and Computer Science, vol. 212, pp. 233–258. Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-3154-8_11

    Chapter  Google Scholar 

  29. Sasao, T., Matsuura, M.: DECOMPOS: an integrated system for functional decomposition. In: International Workshop on Logic Synthesis, vol. 1998, pp. 471–477 (1998)

    Google Scholar 

  30. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible circuit design. J. Multiple Valued Log. Soft Comput. 18(1), 55–65 (2012)

    Google Scholar 

  31. Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large reversible functions using binary decision diagrams. J. Symb. Comput. 73, 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  32. Van den Broeck, G., Darwiche, A.: On the role of canonicity in knowledge compilation. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  33. van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: combining reduction rules from different decision diagram types. In: Proceedings of the 17th Conference on Formal Methods in Computer-Aided Design, FMCAD Inc, pp. 108–115 (2017)

    Google Scholar 

  34. Viamontes, G.F., Rajagopalan, M., Markov, I.L., Hayes, J.P.: Gate-level simulation of quantum circuits. In: Proceedings of the 2003 Asia and South Pacific Design Automation Conference, pp. 295–301 (2003)

    Google Scholar 

  35. Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD a decision diagram for simulation of quantum computing including stabilizer states, arXiv preprint arXiv:2108.00931 (2021)

  36. Vinkhuijzen, L., Laarman, A.: Symbolic model checking with sentential decision diagrams. In: Pang, J., Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp. 124–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2_8

    Chapter  Google Scholar 

  37. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275 (2009)

    Google Scholar 

  38. Zulehner, A., Wille, R.: Improving synthesis of reversible circuits: exploiting redundancies in paths and nodes of QMDDs. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 232–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59936-6_18

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Holger Hoos for insightful discussions and for many useful comments on drafts of this paper, and the anonymous NFM reviewers for helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieuwe Vinkhuijzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinkhuijzen, L., Laarman, A. (2022). The Power of Disjoint Support Decompositions in Decision Diagrams. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds) NASA Formal Methods. NFM 2022. Lecture Notes in Computer Science, vol 13260. Springer, Cham. https://doi.org/10.1007/978-3-031-06773-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06773-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06772-3

  • Online ISBN: 978-3-031-06773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics