[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Slotted Online One-Sided Crossing Minimization Problem on 2-Regular Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2022)

Abstract

In the area of graph drawing, the One-Sided Crossing Minimization Problem (OSCM) is defined on a bipartite graph with both vertex sets aligned parallel to each other and all edges being drawn as straight lines. The task is to find a permutation of one of the node sets such that the total number of all edge-edge intersections, called crossings, is minimized. Usually, the degree of the nodes of one set is limited by some constant k, with the problem then abbreviated to OSCM-k.

In this work, we study an online variant of this problem, in which one of the node sets is already given. The other node set and the incident edges are revealed iteratively as requests and each node has to be inserted into placeholders, which we call slots. The number of slots coincides with the number of requests and their order is fixed. The goal is again to minimize the number of crossings in the final graph. Minimizing crossings in an online way is related to the more empirical field of dynamic graph drawing. Note that the slotted OSCM problem is harder to solve for an online algorithm but in the offline case it is equivalent to the version without slots.

We show that the online slotted OSCM-k is not competitive for any \(k\ge 2\) and subsequently limit the graph class to that of 2-regular graphs, for which we show a lower bound of 4/3 and an upper bound of 5 on the competitive ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. 4, 235–282 (1994)

    Article  MathSciNet  Google Scholar 

  2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Burjons, E., Fuchs, J., Lotze, H.: The slotted online one-sided crossing minimization problem on 2-regular graphs. CoRR abs/2201.04061 (2022)

    Google Scholar 

  4. Dujmovic, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica 40(1), 15–31 (2004)

    Article  MathSciNet  Google Scholar 

  5. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994)

    Article  MathSciNet  Google Scholar 

  6. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. Vis. Comput. Graph. 14(4), 727–740 (2008)

    Article  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)

    Article  MathSciNet  Google Scholar 

  8. Kobayashi, Y., Tamaki, H.: A fast and simple subexponential fixed parameter algorithm for one-sided crossing minimization. Algorithmica 72(3), 778–790 (2015)

    Article  MathSciNet  Google Scholar 

  9. Komm, D.: An Introduction to Online Computation - Determinism, Randomization, Advice. Texts in Theoretical Computer Science. An EATCS Series, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42749-2

    Book  Google Scholar 

  10. Li, X.Y., Stallmann, M.F.M.: New bounds on the barycenter heuristic for bipartite graph drawing. Inf. Process. Lett. 82(6), 293–298 (2002)

    Article  MathSciNet  Google Scholar 

  11. Muñoz, X., Unger, W., Vrt’o, I.: One sided crossing minimization is NP-hard for sparse graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 115–123. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_10

    Chapter  Google Scholar 

  12. Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered drawings. Discret. Comput. Geom. 33(4), 569–591 (2005)

    Article  MathSciNet  Google Scholar 

  13. Nagamochi, H.: On the one-sided crossing minimization in a bipartite graph with large degrees. Theor. Comput. Sci. 332(1–3), 417–446 (2005)

    Article  MathSciNet  Google Scholar 

  14. North, S.C., Woodhull, G.: Online hierarchical graph drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 232–246. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_19

    Chapter  MATH  Google Scholar 

  15. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J. Combin. (2012)

    Google Scholar 

  16. Shannon, R., Quigley, A.J.: Considerations in dynamic graph drawing: a survey. Comput. Sci. Inform. (2007)

    Google Scholar 

  17. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabet Burjons , Janosch Fuchs or Henri Lotze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burjons, E., Fuchs, J., Lotze, H. (2022). The Slotted Online One-Sided Crossing Minimization Problem on 2-Regular Graphs. In: Bazgan, C., Fernau, H. (eds) Combinatorial Algorithms. IWOCA 2022. Lecture Notes in Computer Science, vol 13270. Springer, Cham. https://doi.org/10.1007/978-3-031-06678-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06678-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06677-1

  • Online ISBN: 978-3-031-06678-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics