[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Kong: A Tool to Squash Concurrent Places

  • Conference paper
  • First Online:
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13288))

Abstract

Kong, the Koncurrent places Grinder, is a tool designed to compute the concurrency relation of a Petri net by taking advantage of structural reductions. The specificity of Kong is to rely on a state space abstraction, called polyhedral abstraction in previous works, that involves a combination of structural reductions and linear arithmetic constraints between the marking of places.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral abstraction and SMT-based model checking for Petri nets. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 164–185. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76983-3_9

    Chapter  Google Scholar 

  2. Amat, N., Dal Zilio, S., Le Botlan, D.: Accelerating the computation of dead and concurrent places using reductions. In: Laarman, A., Sokolova, A. (eds.) SPIN 2021. LNCS, vol. 12864, pp. 45–62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84629-9_3

    Chapter  Google Scholar 

  3. Amparore, E., et al.: Presentation of the 9th edition of the model checking contest. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 50–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_4

    Chapter  Google Scholar 

  4. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_13

    Chapter  Google Scholar 

  5. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Petri net reductions for counting markings. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 65–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0_4

    Chapter  Google Scholar 

  6. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from reduction equations. Int. J. Softw. Tools Technol. Transf. 22(2), 163–181 (2019). https://doi.org/10.1007/s10009-019-00519-1

    Article  Google Scholar 

  7. Bouvier, P., Garavel, H.: Efficient algorithms for three reachability problems in safe Petri nets. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 339–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76983-3_17

    Chapter  Google Scholar 

  8. Bouvier, P., Garavel, H., Ponce-de-León, H.: Automatic decomposition of Petri nets into automata networks – a synthetic account. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 3–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_1

    Chapter  Google Scholar 

  9. Garavel, H.: Nested-unit Petri nets. J. Log. Algebraic Methods Program. 104, 60–85 (2019). https://doi.org/10.1016/j.jlamp.2018.11.005

    Article  MathSciNet  MATH  Google Scholar 

  10. Giua, A., DiCesare, F., Silva, M.: Generalized mutual exclusion contraints on nets with uncontrollable transitions. In: IEEE International Conference on Systems, Man, and Cybernetics. IEEE (1992). https://doi.org/10.1109/ICSMC.1992.271666

  11. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: an extendable reference implementation of the Petri net markup language. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_20

    Chapter  Google Scholar 

  12. INRIA: CADP (2020). https://cadp.inria.fr/

  13. Kordon, F., et al.: Complete results for the 2020 edition of the model checking contest (2021). http://mcc.lip6.fr/2021/results.php

  14. LAAS-CNRS: Tina Toolbox (2020). http://projects.laas.fr/tina

  15. Murata, T., Koh, J.: Reduction and expansion of live and safe marked graphs. IEEE Trans. Circ. Syst. 27(1), 68–71 (1980). https://doi.org/10.1109/TCS.1980.1084711

    Article  MathSciNet  MATH  Google Scholar 

  16. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_19

    Chapter  Google Scholar 

  17. Wiśniewski, R., Wiśniewska, M., Jarnut, M.: C-exact hypergraphs in concurrency and sequentiality analyses of cyber-physical systems specified by safe Petri nets. IEEE Access 7, 13510–13522 (2019). https://doi.org/10.1109/ACCESS.2019.2893284

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Bernard Berthomieu and Silvano Dal Zilio for their help on the development of our reduction library, and Pierre Bouvier for his remarks that helped improve the quality of Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Amat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amat, N., Chauvet, L. (2022). Kong: A Tool to Squash Concurrent Places. In: Bernardinello, L., Petrucci, L. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2022. Lecture Notes in Computer Science, vol 13288. Springer, Cham. https://doi.org/10.1007/978-3-031-06653-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06653-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06652-8

  • Online ISBN: 978-3-031-06653-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics