Abstract
Kong, the Koncurrent places Grinder, is a tool designed to compute the concurrency relation of a Petri net by taking advantage of structural reductions. The specificity of Kong is to rely on a state space abstraction, called polyhedral abstraction in previous works, that involves a combination of structural reductions and linear arithmetic constraints between the marking of places.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral abstraction and SMT-based model checking for Petri nets. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 164–185. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76983-3_9
Amat, N., Dal Zilio, S., Le Botlan, D.: Accelerating the computation of dead and concurrent places using reductions. In: Laarman, A., Sokolova, A. (eds.) SPIN 2021. LNCS, vol. 12864, pp. 45–62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84629-9_3
Amparore, E., et al.: Presentation of the 9th edition of the model checking contest. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 50–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_4
Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_13
Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Petri net reductions for counting markings. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 65–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0_4
Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from reduction equations. Int. J. Softw. Tools Technol. Transf. 22(2), 163–181 (2019). https://doi.org/10.1007/s10009-019-00519-1
Bouvier, P., Garavel, H.: Efficient algorithms for three reachability problems in safe Petri nets. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 339–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76983-3_17
Bouvier, P., Garavel, H., Ponce-de-León, H.: Automatic decomposition of Petri nets into automata networks – a synthetic account. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 3–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_1
Garavel, H.: Nested-unit Petri nets. J. Log. Algebraic Methods Program. 104, 60–85 (2019). https://doi.org/10.1016/j.jlamp.2018.11.005
Giua, A., DiCesare, F., Silva, M.: Generalized mutual exclusion contraints on nets with uncontrollable transitions. In: IEEE International Conference on Systems, Man, and Cybernetics. IEEE (1992). https://doi.org/10.1109/ICSMC.1992.271666
Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: an extendable reference implementation of the Petri net markup language. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_20
INRIA: CADP (2020). https://cadp.inria.fr/
Kordon, F., et al.: Complete results for the 2020 edition of the model checking contest (2021). http://mcc.lip6.fr/2021/results.php
LAAS-CNRS: Tina Toolbox (2020). http://projects.laas.fr/tina
Murata, T., Koh, J.: Reduction and expansion of live and safe marked graphs. IEEE Trans. Circ. Syst. 27(1), 68–71 (1980). https://doi.org/10.1109/TCS.1980.1084711
Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_19
Wiśniewski, R., Wiśniewska, M., Jarnut, M.: C-exact hypergraphs in concurrency and sequentiality analyses of cyber-physical systems specified by safe Petri nets. IEEE Access 7, 13510–13522 (2019). https://doi.org/10.1109/ACCESS.2019.2893284
Acknowledgements
We would like to thank Bernard Berthomieu and Silvano Dal Zilio for their help on the development of our reduction library, and Pierre Bouvier for his remarks that helped improve the quality of Kong.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Amat, N., Chauvet, L. (2022). Kong: A Tool to Squash Concurrent Places. In: Bernardinello, L., Petrucci, L. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2022. Lecture Notes in Computer Science, vol 13288. Springer, Cham. https://doi.org/10.1007/978-3-031-06653-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-06653-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06652-8
Online ISBN: 978-3-031-06653-5
eBook Packages: Computer ScienceComputer Science (R0)