[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Citizen Privacy Profile Framework

  • Chapter
  • First Online:
Citizen Privacy Framework

Part of the book series: Fuzzy Management Methods ((FMM))

  • 89 Accesses

Abstract

Grounded on the design science research process and the literature review of the existing body of knowledge, the current and own research contribution was framed into a model as displayed in Fig. 3.1. A broad research framework was developed that identified the critical variables for measurements derived from various and existing privacy frameworks.

Conceptual model of the existing research and own contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cran.r-project.org/web/packages/klaR/klaR.pdf.

  2. 2.

    https://participacioninteligente.org/.

  3. 3.

    https://www.drupal.org/.

  4. 4.

    https://cran.r-project.org/web/packages/fclust/fclust.pdf.

  5. 5.

    https://cran.r-project.org/web/packages/e1071/index.html.

  6. 6.

    https://cran.r-project.org/web/packages/ClusterR/ClusterR.pdf.

  7. 7.

    https://cran.r-project.org/web/packages/fclust/index.html.

  8. 8.

    https://cran.r-project.org/web/packages/factoextra/factoextra.pdf.

  9. 9.

    More information on privacy paradox is in Chap. 2.

References

  • Acquisti, A., & Gross, R. (2006). Imagined communities: Awareness, information sharing, and privacy on the Facebook. In International workshop on privacy enhancing technologies, (pp. 36–58). Springer.

    Google Scholar 

  • Aïmeur, E., Gambs, S., & H, A. (2009). UPP: User privacy policy for social networking sites. In 2009 Fourth international conference on internet and web applications and services.

    Google Scholar 

  • Altman, I. (1977). Privacy regulation: Culturally universal or culturally specific? Journal of Social Issues, 33(3), 66–84.

    Article  Google Scholar 

  • Bezdek, J. C. (1974). Cluster validity with fuzzy sets. Journal of Cybernetics, 3(3), 58–73.

    Article  Google Scholar 

  • Bezdek, J., & Hathaway, R. (2002). VAT: A tool for visual assessment of (cluster) tendency. In IJCNN (pp. 2225–2230).

    Google Scholar 

  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences, 10(2–3), 191–203.

    Article  Google Scholar 

  • Campello, R. J., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858–2875.

    Article  Google Scholar 

  • Cho, H., Rivera-Sánchez, M., & Lim, S. S. (2009). A multinational study on online privacy: global concerns and local responses. New Media & Society, 11(3), 395–416.

    Article  Google Scholar 

  • Dave, R. N. (1996). Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognition Letters, 17(6), 613–623.

    Article  Google Scholar 

  • Dey, R., Jelveh, Z., & Ross, K. (2012). Facebook users have become much more private: A large-scale study. In 2012 IEEE International conference on pervasive computing and communications workshops (PERCOM workshops) (pp. 346–352). IEEE.

    Google Scholar 

  • Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.

    Article  Google Scholar 

  • Fang, L., & LeFevre, K. (2010). Privacy wizards for social networking sites. In Proceedings of the 19th international conference on world wide web.

    Google Scholar 

  • Fivaz, J., & Schwarz, D. (2007). Nailing the pudding to the wall–e-democracy as catalyst for transparency and accountability. In International conference on direct democracy in Latin America (pp. 14–15).

    Google Scholar 

  • Garzia, D., & Marschall, S. (2012). Voting advice applications under review: the state of research. International Journal of Electronic Governance, 5(3–4), 203–222.

    Article  Google Scholar 

  • Giordani, P., & Ferraro, M. B. (2015). Package ‘fclust’: fuzzy clustering. CRAN R studio.

    Google Scholar 

  • Gross, R., & Acquisti, A. (2005). Information revelation and privacy in online social networks. In Proceedings of the 2005 ACM workshop on privacy in the electronic society (pp. 71–80).

    Google Scholar 

  • Gustafson, D. E., & Kessel, W. C. (1979). Fuzzy clustering with a fuzzy covariance matrix. In 1978 IEEE conference on decision and control including the 17th symposium on adaptive processes (pp. 761–766). IEEE.

    Google Scholar 

  • Hoy, M. G., & Milne, G. (2010). Gender differences in privacy-related measures for young adult Facebook users. Journal of Interactive Advertising, 10(2), 28–45.

    Article  Google Scholar 

  • Huang, Z. (1997). A fast clustering algorithm to cluster very large categorical data sets in data mining. DMKD, 3(8), 34–39.

    Google Scholar 

  • Huckfeldt, R., & Sprague, J. (1987). Networks in context: The social flow of political information. American Political Science Review, 81(4), 1197–1216.

    Article  Google Scholar 

  • Jiu-Lun Fan, C.-M. W., & Ma, Y.-L. (2000). A modified partition coefficient. In Signal Processing Proceedings (vol. 3, pp. 1496–1499). IEEE.

    Google Scholar 

  • Johnson, M., Egelman, S., & Bellovin, S. M. (2012). Facebook and privacy: It’s complicated. In Proceedings of the eighth symposium on usable privacy and security.

    Google Scholar 

  • Kang, R., Dabbish, L., Fruchter, N., & Kiesler, S. (2015). My data just goes everywhere? User mental models of the internet and implications for privacy and security. In Symposium on usable privacy and security (SOUPS) (pp. 39–52). USENIX Association Berkeley, CA.

    Google Scholar 

  • Kaskina, A. (2018). Exploring nuances of user privacy preferences on a platform for political participation. In 2018 International conference on eDemocracy & eGovernment (ICEDEG) (pp. 89–94). IEEE.

    Google Scholar 

  • Kaskina, A., & Meier, A. (2016). Integrating privacy and trust in voting advice applications. In Third international conference on eDemocracy & eGovernment (ICEDEG) (pp. 20–25). IEEE.

    Google Scholar 

  • Kaskina, A., & Radovanovic, N. (2016). How to build trust-aware voting advice applications? In International conference on electronic government and the information systems perspective (pp. 48–61). Springer.

    Google Scholar 

  • Katakis, I., Tsapatsoulis, N., Mendez, F., Triga, V., & Djouvas, C. (2014). Social voting advice applications – definitions, challenges, datasets and evaluation. IEEE Transactions on Cybernetics, 44(7), 1039–1052.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster analysis (vol. 344). John Wiley & Sons.

    Google Scholar 

  • Kim, Y. (2011). The contribution of social network sites to exposure to political difference: The relationships among SNSS, online political messaging, and exposure to cross-cutting perspectives. Computers in Human Behavior, 27(2), 971–977.

    Article  Google Scholar 

  • Kim, D.-W., Lee, K. H., & Lee, D. (2004). On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition, 37(10), 2009–2025.

    Article  Google Scholar 

  • Knijnenburg, B. P. (2017). Privacy? i can’t even! making a case for user-tailored privacy. IEEE Security & Privacy, 15(4), 62–67.

    Article  Google Scholar 

  • Knijnenburg, B. P., & Kobsa, A. (2013). Making decisions about privacy: Information disclosure in context-aware recommneder systems. ACM Transactions on Interactive Intelligent Systems, 3(3), 1–23.

    Article  Google Scholar 

  • Knijnenburg, B., Kobsa, A., & Jin, H. (2013). Dimensionality of information disclosure behavior. Journal of Human-Computer Studies, 71(12), 1144–1162.

    Article  Google Scholar 

  • Kobsa, A. (2001). Tailoring privacy to users’ needs. In International conference on user modeling (pp. 301–313). Springer.

    Google Scholar 

  • Krasnova, H., Günther, O., Spiekermann, S., & Koroleva, K. (2009). Privacy concerns and identity in online social networks. Identity in the Information Society, 2(1), 39–63.

    Article  Google Scholar 

  • Kwon, K. H., Moon, S.-I., & Stefanone, M. A. (2015). Unspeaking on Facebook? Testing network effects on self-censorship of political expressions in social network sites. Quality & Quantity, 49(4), 1417–1435.

    Article  Google Scholar 

  • Ladner, A., & Meier, A. (2014). Digitale politische Partizipation-Spannungsfeld zwischen MyPolitics und OurPolitics. HMD Praxis der Wirtschaftsinformatik, 51(6), 867–882.

    Article  Google Scholar 

  • Lederer, S., Hong, J. I., Dey, A. K., & Landay, J. A. (2004). Personal privacy through understanding and action: five pitfalls for designers. Personal and Ubiquitous Computing, 8(6), 440–454.

    Article  Google Scholar 

  • Li, Y., Kobsa, A., Knijnenburg, B. P., Nguyen, C., et al. (2017). Cross-cultural privacy prediction. Proceedings on Privacy Enhancing Technologies, 2017(2), 113–132.

    Article  Google Scholar 

  • Liu, K., & Terzi, E. (2010). A framework for computing the privacy scores of users in online social networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(1), 6.

    Article  Google Scholar 

  • Meier, A. (2012). eDemocracy and eGovernment: Stages of a democratic knowledge society. Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  • Meier, A., Kaskina, A., & Teran, L. (2018). Politische Partizipation–eSociety anders gedacht. HMD Praxis der Wirtschaftsinformatik (pp. 1–13).

    Google Scholar 

  • Munemasa, T., & Iwaihara, M. (2011). Trend analysis and recommendation of users? Privacy settings on social networking services. In International conference on social informatics (pp. 184–197). Springer.

    Google Scholar 

  • Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for the fuzzy c-means model. In IEEE transactions on fuzzy systems (vol. 3). IEEE.

    Google Scholar 

  • Portmann, E. (2012). The FORA framework: A fuzzy grassroots ontology for online reputation management. Springer Science & Business Media.

    Google Scholar 

  • Quercia, D., Casas, D. L., J.P. Pesce, D. S., Kosinski, M., Almeida, V., & Crowcroft (2012). Facebook and privacy: The balancing act of personality, gender, and relationship currency. In ICWSM.

    Google Scholar 

  • Reinhardt, D., Engelmann, F., & Hollick, M. (2015). Can I help you setting your privacy? A survey-based exploration of users’ attitudes towards privacy suggestions. In Proceedings of the 13th international conference on advances in mobile computing and multimedia (pp. 347–356). ACM.

    Google Scholar 

  • Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook (pp. 321–352). Springer.

    Google Scholar 

  • Sawaya, Y., Sharif, M., Christin, N., Kubota, A., Nakarai, A., & Yamada, A. (2017). Self-confidence trumps knowledge: A cross-cultural study of security behavior. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 2202–2214). ACM.

    Google Scholar 

  • Smith, L. I. (2002). A tutorial on principal components analysis. Technical report.

    Google Scholar 

  • Stutzman, F., Gross, R., & Acquisti, A. (2012). Silent listeners: The evolution of privacy and disclosure on Facebook. Journal of Privacy and Confidentiality, 4(2). https://doi.org/10.29012/jpc.v4i2.620.

  • Terán, L., & Mancera, J. (2017). Applying dynamic profiles on voting advice applications. In Wirtschaftsinformatik in Theorie und Praxis (pp. 153–175). Springer.

    Google Scholar 

  • Walgrave, S., Nuytemans, M., & Pepermans, K. (2009). Voting aid applications and the effect of statement selection. West European Politics, 32(6), 1161–1180.

    Article  Google Scholar 

  • Wang, W., & Zhang, Y. (2007). On fuzzy cluster validity indices. Fuzzy Sets and Systems, 158(19), 2095–2117.

    Article  Google Scholar 

  • Westin, A. F. (1968). Privacy and freedom. Washington and Lee Law Review, 25(1), 166.

    Google Scholar 

  • Wisniewski, P., Knijnenburg, B., & Lipford, H. (2017). Making privacy personal: Profiling social network users to inform privacy education and nudging. International Journal of Human-Computer Studies, 98, 95–108.

    Article  Google Scholar 

  • Wu, K.-L., & Yang, M.-S. (2005). A cluster validity index for fuzzy clustering. Pattern Recognition Letters, 26(9), 1275–1291.

    Article  Google Scholar 

  • Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841–847.

    Article  Google Scholar 

  • Yao, M. Z., Rice, R. E., & Wallis, K. (2007). Predicting user concerns about online privacy. Journal of the Association for Information Science and Technology, 58(5), 710–722.

    Google Scholar 

  • Young, A. L., & Quan-Haase, A. (2009). Information revelation and internet privacy concerns on social network sites: a case study of Facebook. In Proceedings of the fourth international conference on communities and technologies (pp. 265–274). ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaskina, A. (2022). Citizen Privacy Profile Framework. In: Citizen Privacy Framework. Fuzzy Management Methods. Springer, Cham. https://doi.org/10.1007/978-3-031-06021-2_3

Download citation

Publish with us

Policies and ethics