[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ToothCR: A Two-Stage Completion and Reconstruction Approach on 3D Dental Model

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13282))

Included in the following conference series:

Abstract

Deep neural networks have made a number of achievements both in tooth segmentation and arrangement on complete 3D dental models. But few studies have used deep learning methods on the tooth completion and reconstruction on the incomplete dental models. To rebuild the missing tooth from incomplete dental model, we propose a two-stage approach ToothCR which takes advantage of the powerful learning capabilities of deep neural networks. In the first stage, ToothCR introduces a geometry-aware transformer encoder into the 3D dental model completion task. Self-attention mechanism in transformers could better model long-range dependencies in point cloud and ensure the predicted missing parts to have precise geometric structures. In the second stage, ToothCR uses a novel surface reconstruction algorithm to recover the surface of the predicted missing tooth. The reconstruction algorithm guarantees the generated surface to be watertight and avoids holes or redundant meshes which traditional methods may produce. Extensive experiments conducted on 3D dental datasets show that our approach outperforms state-of-the-art methods both in qualitative and quantitative results.

This work was supported by National Key Research and Development Program of China (2019YFB1706900), and the Fundamental Research Funds for the Central Universities (30920021131).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  2. Boissonnat, J.D., Geiger, B.: Three-dimensional reconstruction of complex shapes based on the Delaunay triangulation. In: Biomedical Image Processing and Biomedical Visualization, pp. 964–975 (1993)

    Google Scholar 

  3. Buchaillard, S.I., Ong, S.H., Payan, Y., Foong, K.: 3D statistical models for tooth surface reconstruction. Comput. Biol. Medi. 37(10), 1461–1471 (2007)

    Article  Google Scholar 

  4. Charles, R., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 77–85 (2017)

    Google Scholar 

  5. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983)

    Article  MathSciNet  Google Scholar 

  6. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  7. Huang, J., Su, H., Guibas, L.: Robust watertight manifold surface generation method for shapenet models. arXiv preprint arXiv:1802.01698 (2018)

  8. Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670 (2020)

    Google Scholar 

  9. Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. 32(3), 1–13 (2013)

    Article  Google Scholar 

  10. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36(4), 1–13 (2017)

    Article  Google Scholar 

  11. Lian, C., Wang, L., Wu, T.H., Wang, F., Yap, P.T., Ko, C.C., Shen, D.: Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Trans. Med. Imaging 39(7), 2440–2450 (2020)

    Article  Google Scholar 

  12. Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network for dense point cloud completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11596–11603 (2020)

    Google Scholar 

  13. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  14. Martorelli, M., Ausiello, P.: A novel approach for a complete 3D tooth reconstruction using only 3D crown data. Int. J. Interact. Des. Manuf. 7(2), 125–133 (2013)

    Article  Google Scholar 

  15. Pan, L., Chen, X., Cai, Z., Zhang, J., Zhao, H., Yi, S., Liu, Z.: Variational relational point completion network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8524–8533 (2021)

    Google Scholar 

  16. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.: Image transformer. In: International Conference on Machine Learning, pp. 4055–4064 (2018)

    Google Scholar 

  17. Ping, Y., Wei, G., Yang, L., Cui, Z., Wang, W.: Self-attention implicit function networks for 3D dental data completion. Comput. Aided Geomet. Des. 90, 102026 (2021)

    Google Scholar 

  18. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5105–5114 (2017)

    Google Scholar 

  19. Tian, S., Wang, M., Dai, N., Ma, H., Li, L., Fiorenza, L., Sun, Y., Li, Y.: DCPR-GAN: dental crown prosthesis restoration using two-stage generative adversarial networks. IEEE J. Biomed. Health Inform. 26(1), 151–160 (2021)

    Google Scholar 

  20. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 311–318 (1994)

    Google Scholar 

  21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  22. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)

    Google Scholar 

  23. Wei, G., Cui, Z., Liu, Y., Chen, N., Chen, R., Li, G., Wang, W.: TANet: Towards fully automatic tooth arrangement. In: European Conference on Computer Vision, pp. 481–497 (2020)

    Google Scholar 

  24. Xie, C., Wang, C., Zhang, B., Yang, H., Chen, D., Wen, F.: Style-based point generator with adversarial rendering for point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4619–4628 (2021)

    Google Scholar 

  25. Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W.: GRNet: gridding residual network for dense point cloud completion. In: European Conference on Computer Vision, pp. 365–381 (2020)

    Google Scholar 

  26. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)

    Google Scholar 

  27. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507 (2021)

    Google Scholar 

  28. Yuan, T., Liao, W., Dai, N., Cheng, X., Yu, Q.: Single-tooth modeling for 3D dental model. Int. J. Biomed. Imaging 2010 (2010)

    Google Scholar 

  29. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: Point completion network. In: International Conference on 3D Vision, pp. 728–737 (2018)

    Google Scholar 

  30. Zhang, L., et al.: TSGCNet: discriminative geometric feature learning with two-stream graph convolutional network for 3D dental model segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6699–6708 (2021)

    Google Scholar 

  31. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv preprint arXiv:1801.09847 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyi Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, H., Jia, X., Zhang, C., Liu, T. (2022). ToothCR: A Two-Stage Completion and Reconstruction Approach on 3D Dental Model. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13282. Springer, Cham. https://doi.org/10.1007/978-3-031-05981-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05981-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05980-3

  • Online ISBN: 978-3-031-05981-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics