[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Benchmarking Neural Networks-Based Approaches for Predicting Visual Perception of User Interfaces

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2022)

Abstract

Deep Learning techniques have become the mainstream and unquestioned standard in many fields, e.g. convolutional neural networks (CNN) for image analysis and recognition tasks. As testing and validation of graphical user interfaces (GUIs) is increasingly relying on computer vision, CNN models that predict such subjective and informal dimensions of user experience as aesthetic or complexity perception start to achieve decent accuracy. They however require huge amounts of human-labeled training data, which are costly or unavailable in the field of Human-Computer Interaction (HCI). More traditional approaches rely on manually engineered features that are extracted from UI images with domain-specific algorithms and are used in “traditional” Machine Learning models, such as feedforward artificial neural networks (ANN) that generally need fewer data. In our paper, we compare the prediction quality of CNN (a modified GoogLeNet architecture) and ANN models to predict visual perception per Aesthetics, Complexity, and Orderliness scales for about 2700 web UIs assessed by 137 users. Our results suggest that the ANN architecture produces smaller Mean Squared Error (MSE) for the training dataset size (N) available in our study, but that CNN should become superior with N > 2912. We also propose the regression model that can help HCI researchers to foretell MSE in their ML experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The web browser version is available at http://va.wuikb.info.

References

  1. Oulasvirta, A., et al.: Aalto interface metrics (AIM): a service and codebase for computational GUI evaluation. In: The 31st Annual ACM Symposium on User Interface Software and Technology Adjunct Proceedings, pp. 16–19. ACM (2018)

    Google Scholar 

  2. Bakaev, M., Heil, S., Khvorostov, V., Gaedke, M.: Auto-extraction and integration of metrics for web user interfaces. J. Web Eng. 17(6), 561–590 (2018)

    Article  Google Scholar 

  3. Bakaev, M., Speicher, M., Heil, S., Gaedke, M.: I Don’t Have That Much Data! Reusing User Behavior Models for Websites from Different Domains. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 146–162. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50578-3_11

    Chapter  Google Scholar 

  4. Lima, A.L.D.S., Gresse von Wangenheim, C.: Assessing the visual esthetics of user interfaces: a ten-year systematic mapping. Int. J. Hum. Comput. Interact. 38(2), 144–164 (2022)

    Google Scholar 

  5. Dou, Q., Zheng, X.S., Sun, T., Heng, P.A.: Webthetics: quantifying webpage aesthetics with deep learning. Int. J. Hum Comput Stud. 124, 56–66 (2019)

    Article  Google Scholar 

  6. Deka, B., et al.: Rico: A mobile app dataset for building data-driven design applications. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 845–854 (2017)

    Google Scholar 

  7. Bakaev M., Heil, S., Hamgushkeeva, G., Gaedke, M.: The effect of input data quality in feature-based modeling of user behavior. In: ESK International Symposium (2021) (In Print)

    Google Scholar 

  8. Ciołkosz-Styk, A., Styk, A.: Advanced image processing for maps graphical complexity estimation. In: Proceedings of the 26th International Cartographic Conference, Dresden, Germany, pp. 25–30 (2013)

    Google Scholar 

  9. Carballal, A., Santos, A., Romero, J., Machado, P., Correia, J., Castro, L.: Distinguishing paintings from photographs by complexity estimates. Neural Comput. Appl. 30(6), 1957–1969 (2016). https://doi.org/10.1007/s00521-016-2787-5

    Article  Google Scholar 

  10. López-Rubio, J.M., Molina-Cabello, M.A., Ramos-Jiménez, G., López-Rubio, E.: Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks. In: Rojas, I., Joya, G., Català, A. (eds.) IWANN 2021. LNCS, vol. 12861, pp. 432–442. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85030-2_36

    Chapter  Google Scholar 

  11. Kreinovich, V.: From traditional neural networks to deep learning: towards mathematical foundations of empirical successes. In: Shahbazova, S.N., Kacprzyk, J., Balas, V.E., Kreinovich, V. (eds.) Recent Developments and the New Direction in Soft-Computing Foundations and Applications. SFSC, vol. 393, pp. 387–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-47124-8_31

    Chapter  Google Scholar 

  12. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6

    Article  Google Scholar 

  13. Talebi, H., Milanfar, P.: NIMA: Neural image assessment. IEEE Trans. Image Process. 27(8), 3998–4011 (2018)

    Article  MathSciNet  Google Scholar 

  14. Xing, B., Si, H., Chen, J., Ye, M., Shi, L.: Computational model for predicting user aesthetic preference for GUI using DCNNs. CCF Trans. Pervasive Comput. Interact. 3(2), 147–169 (2021). https://doi.org/10.1007/s42486-021-00064-4

    Article  Google Scholar 

  15. Chen, J., et al.: Object detection for graphical user interface: old fashioned or deep learning or a combination? In: proceedings of the 28th ACM joint meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1202–1214 (2020)

    Google Scholar 

  16. Kamath, C.N., Bukhari, S.S., Dengel, A.: Comparative study between traditional machine learning and deep learning approaches for text classification. In: Proceedings of the ACM Symposium on Document Engineering 2018, pp. 1–11 (2018)

    Google Scholar 

  17. Asim, M.N., Ghani, M.U., Ibrahim, M.A., Mahmood, W., Dengel, A., Ahmed, S.: Benchmarking performance of machine and deep learning-based methodologies for Urdu text document classification. Neural Comput. Appl. 33(11), 5437–5469 (2020)

    Article  Google Scholar 

  18. de Oliveira T. Souza, J., de Souza, A.D., Vasconcelos, L.G., Baldochi, L.A.: Usability Smells: A Systematic Review. In: Latifi, S. (ed.) ITNG 2021 18th International Conference on Information Technology-New Generations. AISC, vol. 1346, pp. 281–288. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70416-2_36

    Chapter  Google Scholar 

  19. Zen, M., Vanderdonckt, J.: Towards an evaluation of graphical user interfaces aesthetics based on metrics. In: 2014 IEEE Eighth International Conference on Research Challenges in Information Science, RCIS, pp. 1–12. IEEE (2014)

    Google Scholar 

  20. Yang, B. et al.: Don’t Do That! Hunting down visual design smells in complex UIs against design guidelines. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering, ICSE, pp. 761–772. IEEE (2021)

    Google Scholar 

  21. Michailidou, E., Eraslan, S., Yesilada, Y., Harper, S.: Automated prediction of visual complexity of web pages: Tools and evaluations. International Journal of Human-Computer Studies 145, 102523 (2021)

    Google Scholar 

  22. Bakaev, M., Heil, S., Khvorostov, V., Gaedke, M.: HCI vision for automated analysis and mining of web user interfaces. In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) ICWE 2018. LNCS, vol. 10845, pp. 136–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91662-0_10

    Chapter  Google Scholar 

  23. Boychuk, E., Bakaev, M.: Entropy and compression based analysis of web user interfaces. In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol. 11496, pp. 253–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19274-7_19

    Chapter  Google Scholar 

  24. Elngar, A.A., et al.: Image classification based on CNN: a survey. J. Cybersecurity Inf. Manag. (JCIM) 6(1), 18–50 (2021)

    Article  Google Scholar 

  25. Özgür, A., Nar, F.: Effect of dropout layer on classical regression problems. In: 2020 28th Signal Processing and Communications Applications Conference, SIU, pp. 1–4. IEEE (2020)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

    Google Scholar 

  27. Bianco, S., Celona, L., Napoletano, P., Schettini, R.: Predicting image aesthetics with deep learning. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 117–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_11

    Chapter  Google Scholar 

Download references

Acknowledgment

The reported study was funded by RFBR according to the research project No. 19–29-01017. The research was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 416228727—SFB 1410.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Bakaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakaev, M., Heil, S., Chirkov, L., Gaedke, M. (2022). Benchmarking Neural Networks-Based Approaches for Predicting Visual Perception of User Interfaces. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science(), vol 13336. Springer, Cham. https://doi.org/10.1007/978-3-031-05643-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05643-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05642-0

  • Online ISBN: 978-3-031-05643-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics