Abstract
Computational approaches can leverage single-cell snapshots to infer sequential gene expression changes during developmental processes. For example, cell trajectory inference algorithms use pairwise cell similarities to map cells onto a “pseudotime” axis corresponding to predicted developmental progress. However, trajectory inference based on similarity cannot predict the directions or relative rates of cellular transitions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bergen, V., Lange, M., Peidli, S., Wolf, F.A., Theis, F.J.: Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020). https://doi.org/10.1038/s41587-020-0591-3
La Manno, G., et al.: RNA velocity of single cells. Nature 560, 494–498 (2018). https://doi.org/10.1038/s41586-018-0414-6
Ma, S., et al.: Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020). https://doi.org/10.1016/j.cell.2020.09.056
Trevino, A.E., et al.: Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 184(19), 5053–5069.e23 (2021). https://doi.org/10.1016/j.cell.2021.07.039
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, C., Virgilio, M., Collins, K.L., Welch, J.D. (2022). Single-Cell Multi-omic Velocity Infers Dynamic and Decoupled Gene Regulation. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. https://doi.org/10.1007/978-3-031-04749-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-04749-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04748-0
Online ISBN: 978-3-031-04749-7
eBook Packages: Computer ScienceComputer Science (R0)