Abstract
The purpose of the research in this article is to analyze the structure of energy in Germany and compare the obtained data with events occurring in the country and the world. The article reviews the world energy sector and considers the rating of regions by gross energy production. The analysis helps to identify the leading regions in terms of energy production: Asia and Oceania, North America and Europe. The German economy and energy sector were considered, as well as the development of nuclear power in particular and the gradual abandonment from nuclear power plants because of the occurred radiation accidents in the world. It also describes the relevance of data analysis in the energy sector, especially in working with renewable energy sources due to their instability and unpredictability. Using self-organizing Kohonen maps, the data on German energy indicators was analyzed. Basing on the analysis it was concluded that these maps correspond to the changes in the energy policy of Germany.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hara, T.: Introduction: the sustainability of the world population. In: An Essay on the Principle of Sustainable Population. SPS, pp. 1–10. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-3654-6_1
Sreewirote, B., Noppakant, A., Pothisarn, C.: Increasing efficiency of an electricity production system from solar energy with a method of reducing solar panel temperature. In: 2017 International Conference on Applied System Innovation (ICASI). IEEE, pp. 1308–1311 (2017)
de Lima, L.P., de Deus Ribeiro, G.B., Perez, R.: The energy mix and energy efficiency analysis for Brazilian dairy industry. J. Clean. Prod. 181, 209–216 (2018)
Fei, F., Wen, Z., Huang, S., De Clercq, D.: Mechanical biological treatment of municipal solid waste: energy efficiency, environmental impact and economic feasibility analysis. J. Clean. Prod. 178, 731–739 (2018)
Cornelis, M.: Energy efficiency, the overlooked climate emergency solution. Econ. Policy 2, 48–67 (2020)
EES EAEC. http://www.eeseaec.org. Accessed 28 Jan 2021
Salygin, V.I., Meden, N.K.: On the issue of methodology of energy policy research (German example) MGIMO Univ. Bullet. 6(45), 181–192 (2015)
Kukartsev, V.V., Beletskaya, O.D., Fabrichkina, M.O., Tynchenko, V.S., Mikhalev, A.S.: Kohonen maps to organize staff recruitment and study of workers’ absenteeism. J. Phys. Conf. Series 1399(3), 033108 (2019)
Caruso, G., Gattone, S.A., Fortuna, F., Di Battista, T.: Cluster analysis for mixed data: an application to credit risk evaluation. Socio-Econ. Plann. Sci. 73, 100850 (2021)
Jasiński, M., et al.: A case study on data mining application in a virtual power plant: cluster analysis of power quality measurements. Energies 14(4), 974 (2021)
Vedernikov, M., Zelena, M., Volianska-Savchuk, L., Litinska, V., Boiko, J.: Management of the social package structure at industrial enterprises on the basis of cluster analysis. TEM J. 9(1), 249–260 (2020)
Tynchenko, V.S., Tynchenko, V.V., Bukhtoyarov, V.V., Kukartsev, V.A., Eremeev, D.V.: Application of Kohonen self-organizing maps to the analysis of enterprises’ employees certification results. IOP Conf. Series Mater. Sci. Eng. 537(4), 042010 (2019)
Ermolaev, D.V.: Clustering as a factor in industrial development. Bulletin Tula State Univ. Econ. Legal Sci. 3(1), 82–95 (2016)
IEA. https://www.iea.org. Accessed 28 Jan 2021
German Federal statistical office. https://www.destatis.de/EN/Home/_node.html. Accessed 28 Jan 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Potapenko, I., Kukartsev, V., Tynchenko, V., Mikhalev, A., Ershova, E. (2022). Analysis of the Structure of Germany’s Energy Sector with Self-organizing Kohonen Maps. In: Abramowicz, W., Auer, S., Stróżyna, M. (eds) Business Information Systems Workshops. BIS 2021. Lecture Notes in Business Information Processing, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-031-04216-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-04216-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04215-7
Online ISBN: 978-3-031-04216-4
eBook Packages: Computer ScienceComputer Science (R0)