[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Role of Bio-Inspired Modularity in General Learning

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13154))

Included in the following conference series:

  • 1529 Accesses

Abstract

One goal of general intelligence is to learn novel information without overwriting prior learning, i.e. catastrophic forgetting (CF). The utility of preserving knowledge across training tasks is twofold: first, the system can return to previously learned tasks after learning something new. In addition, bootstrapping previous knowledge may allow for faster learning of a novel task. Current approaches to learning without forgetting depend on strategically preserving weights that are critical to a previously learned task. However, another potential factor that has been largely overlooked is leveraging the initial network topology, or architecture. Here, we propose that the topology of biological brains likely evolved certain features that are designed to achieve knowledge preservation. In particular, we consider that the highly conserved property of anatomical modularity may offer a solution to weight-update learning methods that leverages learning without catastrophic forgetting for general bootstrapping to novel circumstances. Final considerations are made on how to combine these two objectives in a general learning system.

Supported by Machine Perception and Cognitive Robotics Labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aich, A.: Elastic weight consolidation (EWC): Nuts and bolts. arXiv preprint arXiv:2105.04093 (2021)

  2. Bruce, L.L.: Evolution of the brain in reptiles. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds.) Encyclopedia of Neuroscience, pp. 1295–1301. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-29678-2_3147

  3. Coward, L.A.: The recommendation architecture: lessons from large-scale electronic systems applied to cognition. Cogn. Syst. Res. 2(2), 111–156 (2001)

    Article  Google Scholar 

  4. Coward, L.A.: A System Architecture Approach to the Brain: From Neurons to Consciousness. Nova Publishers, Hauppauge (2005)

    Google Scholar 

  5. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Gershenson, C.: Introduction to random Boolean networks. arXiv preprint nlin/0408006 (2004)

  7. Goertzel, B., Pennachin, C.: Artificial General Intelligence. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-68677-4

    Book  MATH  Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  9. Goudarzi, A., Teuscher, C., Gulbahce, N., Rohlf, T.: Emergent criticality through adaptive information processing in Boolean networks. Phys. Rev. Lett. 108(12), 128702 (2012)

    Article  Google Scholar 

  10. Goyal, A., Bengio, Y.: Inductive biases for deep learning of higher-level cognition. arXiv preprint arXiv:2011.15091 (2020)

  11. Goyal, A., et al.: Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893 (2019)

  12. Gutowitz, H.: Cellular Automata: Theory and Experiment. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  13. György Buzsáki, M.: The Brain from Inside Out. Oxford University Press, Oxford (2019)

    Book  Google Scholar 

  14. Hebb, D.O.: The Organisation of Behaviour: A Neuropsychological Theory. Science Editions, New York (1949)

    Google Scholar 

  15. Hutter, M.: A gentle introduction to the universal algorithmic agent AIXI (2003)

    Google Scholar 

  16. Ito, K., et al.: A systematic nomenclature for the insect brain. Neuron 81(4), 755–765 (2014)

    Article  Google Scholar 

  17. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kotrschal, A., Kotrschal, K.: Fish brains: anatomy, functionality, and evolutionary relationships. In: Kristiansen, T.S., Fernö, A., Pavlidis, M.A., van de Vis, H. (eds.) The Welfare of Fish. AW, vol. 20, pp. 129–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41675-1_6

    Chapter  Google Scholar 

  19. Koutník, J., Cuccu, G., Schmidhuber, J., Gomez, F.: Evolving large-scale neural networks for vision-based reinforcement learning. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1061–1068 (2013)

    Google Scholar 

  20. Lalo, E., et al.: Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J. Neurosci. 28(12), 3008–3016 (2008)

    Article  Google Scholar 

  21. Larsell, O.: The cerebellum of reptiles: lizards and snake. J. Comp. Neurol. 41(1), 59–94 (1926)

    Article  Google Scholar 

  22. Lee, D.S.: Evolution of regulatory networks towards adaptability and stability in a changing environment. Phys. Rev. E 90(5), 052822 (2014)

    Article  Google Scholar 

  23. Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI-Künstliche Intell. 26(4), 365–371 (2012). https://doi.org/10.1007/s13218-012-0204-5

    Article  Google Scholar 

  24. Werle van der Merwe, A.: Investigating the evolution of modularity in neural networks. Ph.D. thesis. Stellenbosch University, Stellenbosch (2020)

    Google Scholar 

  25. Nixon, J., Lakshminarayanan, B., Tran, D.: Why are bootstrapped deep ensembles not better? In: “I Can’t Believe It’s Not Better!” NeurIPS 2020 Workshop (2020)

    Google Scholar 

  26. Nomura, T., Izawa, E.I.: Avian brains: insights from development, behaviors and evolution. Dev. Growth Differ. 59(4), 244–257 (2017)

    Article  Google Scholar 

  27. Ring, H., Serra-Mestres, J.: Neuropsychiatry of the basal ganglia. J. Neurol. Neurosurg. Psychiatry 72(1), 12–21 (2002)

    Article  Google Scholar 

  28. Rosa, M., et al.: Badger: Learning to (learn [learning algorithms] through multi-agent communication). arXiv preprint arXiv:1912.01513 (2019)

  29. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  30. Schölkopf, B., et al.: Toward causal representation learning. Proc. IEEE 109(5), 612–634 (2021)

    Article  Google Scholar 

  31. Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artif. Intell. 299, 103535 (2021)

    Article  MathSciNet  Google Scholar 

  32. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nat. Mach. Intell. 1(1), 24–35 (2019)

    Article  Google Scholar 

  33. Sutherland, R., Whishaw, I., Kolb, B.: Contributions of cingulate cortex to two forms of spatial learning and memory. J. Neurosci. 8(6), 1863–1872 (1988)

    Article  Google Scholar 

  34. Tong, M.H., Joyce, C.A., Cottrell, G.W.: Why is the fusiform face area recruited for novel categories of expertise? a neurocomputational investigation. Brain Res. 1202, 14–24 (2008)

    Article  Google Scholar 

  35. Trestman, M.: The Cambrian explosion and the origins of embodied cognition. Biol. Theory 8(1), 80–92 (2013). https://doi.org/10.1007/s13752-013-0102-6

    Article  Google Scholar 

  36. Turing, A.: Intelligent machinery, 1948. In: The Essential Turing, p. 395 (1969)

    Google Scholar 

  37. Turing, A.M.: Computing machinery and intelligence. In: Epstein, R., Roberts, G., Beber, G. (eds.) Parsing the Turing Test, pp. 23–65. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-6710-5_3

    Chapter  Google Scholar 

  38. Vanschoren, J.: Meta-learning: A survey. arXiv preprint arXiv:1810.03548 (2018)

  39. Wang, J., Elfwing, S., Uchibe, E.: Modular deep reinforcement learning from reward and punishment for robot navigation. Neural Netw. 135, 115–126 (2021)

    Article  Google Scholar 

  40. Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Paired open-ended trailblazer (POET): Endlessly generating increasingly complex and diverse learning environments and their solutions. arXiv preprint arXiv:1901.01753 (2019)

  41. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big data 3(1), 1–40 (2016)

    Article  Google Scholar 

  42. Williams, S., Yaeger, L.: Evolution of neural dynamics in an ecological model. Geosciences 7(3), 49 (2017)

    Article  Google Scholar 

  43. Xie, Z., He, F., Fu, S., Sato, I., Tao, D., Sugiyama, M.: Artificial neural variability for deep learning: on overfitting, noise memorization, and catastrophic forgetting. Neural Comput. 33(8), 1–30 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Yopak, K.E., Lisney, T.J., Darlington, R.B., Collin, S.P., Montgomery, J.C., Finlay, B.L.: A conserved pattern of brain scaling from sharks to primates. Proc. Nat. Acad. Sci. 107(29), 12946–12951 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel A. StClair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

StClair, R.A., Edward Hahn, W., Barenholtz, E. (2022). The Role of Bio-Inspired Modularity in General Learning. In: Goertzel, B., Iklé, M., Potapov, A. (eds) Artificial General Intelligence. AGI 2021. Lecture Notes in Computer Science(), vol 13154. Springer, Cham. https://doi.org/10.1007/978-3-030-93758-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93758-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93757-7

  • Online ISBN: 978-3-030-93758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics