[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Machine Learning to Machine Wisdom: A Potential Quest

  • Conference paper
  • First Online:
Big Data Analytics (BDA 2021)

Abstract

In the present era of artificial intelligence (AI) enabled solutions, the world is observing a tremendous influx in machine learning (ML) approaches across various application domains like healthcare, industry, document analysis, audio-video processing, etc. All existing machine learning approaches claim for intelligent solutions, but till date the learning is guided by the human wisdom i.e. all the proposed machine intelligence algorithms are data centric and infer knowledge without understanding the scenarios. The wisdom is an ability to take wise decisions based on the inferred knowledge to satisfy W5HH principle which outlines the series of answers to the questions such as why, what, who, when, where, how and how much, in a given context. This paper discusses the scope of machine wisdom (artificial wisdom)over conventional machine learning strategies along with its significance and how it can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asimov, I.: Three laws of robotics. Asimov, I. Runaround (1941)

    Google Scholar 

  2. Buttazzo, G.: Artificial consciousness: utopia or real possibility? Computer 34(7), 24–30 (2001)

    Article  Google Scholar 

  3. Corey, D.D.: Socratic citizenship: Delphic oracle and divine sign. Rev. Politics 67(2), 201–228 (2005)

    Article  Google Scholar 

  4. Gil, Y., Selman, B.: A 20-year community roadmap for artificial intelligence research in the us. arXiv preprint arXiv:1908.02624 (2019)

  5. Gottfredson, L.S.: Mainstream science on intelligence: an editorial with 52 signatories, history, and bibliography (1997)

    Google Scholar 

  6. Graham, S.A., Depp, C.A.: Artificial intelligence and risk prediction in geriatric mental health: what happens next? Int. Psychogeriatr. 31(7), 921–923 (2019)

    Article  Google Scholar 

  7. Graham, S.A., et al.: Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: a conceptual review. Psychiatry Res. 284, 112732 (2020)

    Article  Google Scholar 

  8. Grassi, M., Loewenstein, D.A., Caldirola, D., Schruers, K., Duara, R., Perna, G.: A clinically-translatable machine learning algorithm for the prediction of Alzheimer’s disease conversion: further evidence of its accuracy via a transfer learning approach. Int. Psychogeriatr. 31(7), 937–945 (2019)

    Article  Google Scholar 

  9. Grossmann, I., Brienza, J.P.: The strengths of wisdom provide unique contributions to improved leadership, sustainability, inequality, gross national happiness, and civic discourse in the face of contemporary world problems. J. Intell. 6(2), 22 (2018)

    Article  Google Scholar 

  10. Hao, M., Cao, W., Liu, Z., Wu, M., Yuan, Y.: Emotion regulation based on multi-objective weighted reinforcement learning for human-robot interaction. In: 2019 12th Asian Control Conference (ASCC), pp. 1402–1406. IEEE (2019)

    Google Scholar 

  11. Howard, J.: Artificial intelligence: implications for the future of work. Am. J. Ind. Med. 62(11), 917–926 (2019)

    Article  Google Scholar 

  12. Jeste, D.V., Graham, S.A., Nguyen, T.T., Depp, C.A., Lee, E.E., Kim, H.C.: Beyond artificial intelligence: exploring artificial wisdom. Int. Psychogeriatr. 32(8), 993–1001 (2020)

    Article  Google Scholar 

  13. Jeste, D.V., et al.: The new science of practical wisdom. Perspect. Biol. Med. 62(2), 216 (2019)

    Article  Google Scholar 

  14. Kim, T.W., Mejia, S.: From artificial intelligence to artificial wisdom: what socrates teaches us. Computer 52(10), 70–74 (2019)

    Article  Google Scholar 

  15. Lee, E.E., et al.: Outcomes of randomized clinical trials of interventions to enhance social, emotional, and spiritual components of wisdom: a systematic review and meta-analysis. JAMA Psychiat. 77(9), 925–935 (2020)

    Article  Google Scholar 

  16. Leslie, A.M.: Pretense and representation: the origins of “theory of mind’’. Psychol. Rev. 94(4), 412 (1987)

    Article  Google Scholar 

  17. Minsky, M.L.: Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Mag. 12(2), 34 (1991)

    Google Scholar 

  18. Nocentini, O., Fiorini, L., Acerbi, G., Sorrentino, A., Mancioppi, G., Cavallo, F.: A survey of behavioral models for social robots. Robotics 8(3), 54 (2019)

    Article  Google Scholar 

  19. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  20. Plucker, J., Esping, A., Kaufman, J., Avitia, M.: Handbook of Intelligence: Evolutionary Theory, Historical Perspective, and Current Concepts (2015)

    Google Scholar 

  21. Qureshi, A.H., Nakamura, Y., Yoshikawa, Y., Ishiguro, H.: Intrinsically motivated reinforcement learning for human-robot interaction in the real-world. Neural Netw. 107, 23–33 (2018)

    Article  Google Scholar 

  22. Salge, C., Polani, D.: Empowerment as replacement for the three laws of robotics. Front. Robot. AI 4, 25 (2017)

    Article  Google Scholar 

  23. Sevilla, D.C.: The quest for artificial wisdom. AI Soc. 28(2), 199–207 (2013)

    Article  MathSciNet  Google Scholar 

  24. Staudinger, U.M.: Older and wiser? Integrating results on the relationship between age and wisdom-related performance. Int. J. Behav. Dev. 23(3), 641–664 (1999)

    Article  Google Scholar 

  25. Thrun, S., Littman, M.L.: Reinforcement learning: an introduction. AI Mag. 21(1), 103 (2000)

    Google Scholar 

  26. Treichler, E.B., et al.: A pragmatic trial of a group intervention in senior housing communities to increase resilience. Int. Psychogeriatr. 32(2), 173–182 (2020)

    Article  Google Scholar 

  27. Tsai, C.H.: Artificial wisdom: a philosophical framework. AI Soc. 35(4), 937–944 (2020)

    Article  Google Scholar 

  28. Worthy, D.A., Gorlick, M.A., Pacheco, J.L., Schnyer, D.M., Maddox, W.T.: With age comes wisdom: decision making in younger and older adults. Psychol. Sci. 22(11), 1375–1380 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Sonbhadra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagabhushan, P., Sonbhadra, S.K., Punn, N.S., Agarwal, S. (2021). Towards Machine Learning to Machine Wisdom: A Potential Quest. In: Srirama, S.N., Lin, J.CW., Bhatnagar, R., Agarwal, S., Reddy, P.K. (eds) Big Data Analytics. BDA 2021. Lecture Notes in Computer Science(), vol 13147. Springer, Cham. https://doi.org/10.1007/978-3-030-93620-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93620-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93619-8

  • Online ISBN: 978-3-030-93620-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics