[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Training Few-Shot Classification via the Perspective of Minibatch and Pretraining

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

Abstract

Few-shot classification is a challenging task which aims to formulate the ability of humans to learn concepts from limited prior data. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is trained to learn the ability of handling classification tasks on extremely large episodes. In this work, we advance this few-shot classification paradigm by formulating it as a regular classification learning problem. We further propose multi-episode and cross-way training techniques, which respectively correspond to the minibatch and pretraining in regular classification problems for speeding up convergence in training. Experimental results on a state-of-the-art few-shot classification method (prototypical networks) demonstrate that both the proposed training strategies can highly accelerate the training process without accuracy loss for varying few-shot classification problems on Omniglot and miniImageNet.

Supported by the Beijing Nova Program of Science and Technology under Grant Z191100001119129 and the National Natural Science Foundation of China 61702520.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is noted that the network in pretraining does not need to be the same as that in the target supervised learning problem. Therefore, the cross-way training strategy can also work for optimization or memory-based methods where we can optionally just pretrain several feature layers. Related work can be explored in the future.

  2. 2.

    https://github.com/jakesnell/prototypical-networks.git.

  3. 3.

    See results of cosine distance in supplementary material.

  4. 4.

    See results of different learning rate scheduling strategy in supplementary material.

  5. 5.

    Results are slightly different on miniImageNet because the open source code does not contain the implementations of training settings and data processing and we re-implement these by ourselves.

References

  1. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: Proceedings of AMCSS, vol. 33, pp. 2568–2573 (2011)

    Google Scholar 

  2. Li, F.F., Rob, F., Pietro, P.: One-shot learning of object categories. IEEE Trans. PAMI 28(4), 594–611 (2006)

    Article  Google Scholar 

  3. Schmidhuber, J.: Evolutionary principles in self-referential learning, On learning how to learn: The meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich (1987)

    Google Scholar 

  4. Naik, D.K., Mammone, R.J.: Meta-neural networks that learn by learning. In: Proceedings of IJCNN, vol. 1, pp. 437–442. IEEE (1992)

    Google Scholar 

  5. Thrun, S., Pratt, L.: Learning to Learn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4615-5529-2

    Book  MATH  Google Scholar 

  6. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning to learn using gradient descent. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 87–94. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44668-0_13

    Chapter  Google Scholar 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks, CoRR, vol. abs/1703.03400 (2017)

    Google Scholar 

  8. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: Proceedings of ICLR (2017)

    Google Scholar 

  9. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms, CoRR, vol. abs/1803.02999 (2018)

    Google Scholar 

  10. Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Hadsell, R.: Meta-learning with latent embedding optimization, arXiv preprint arXiv:1807.05960 (2018)

  11. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: Proceedings of ICML, pp. 1842–1850 (2016)

    Google Scholar 

  12. Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of ICML, pp. 2554–2563. JMLR. org (2017)

    Google Scholar 

  13. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: Meta-learning with temporal convolutions, CoRR, vol. abs/1707.03141 (2017)

    Google Scholar 

  14. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  15. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NIPS, pp. 3630–3638 (2016)

    Google Scholar 

  16. Shyam, P., Gupta, S., Dukkipati, A.: Attentive recurrent comparators. In: Proceedings of ICML, pp. 3173–3181. JMLR. org (2017)

    Google Scholar 

  17. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: NIPS, pp. 4077–4087 (2017)

    Google Scholar 

  18. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of IEEE CVPR, pp. 1199–1208 (2018)

    Google Scholar 

  19. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification, CoRR, vol. abs/1803.00676 (2018)

    Google Scholar 

  20. Zhang, C., Cai, Y., Lin, G., Shen, C.: DeepEMD: few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12203–12213 (2020)

    Google Scholar 

  21. Chen, Y., Wang, X., Liu, Z., Xu, H., Darrell, T.: A new meta-baseline for few-shot learning, arXiv preprint arXiv:2003.04390 (2020)

  22. Li, A., Huang, W., Lan, X., Feng, J., Li, Z., Wang, L.: Boosting few-shot learning with adaptive margin loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12576–12584 (2020)

    Google Scholar 

  23. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  25. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

    Google Scholar 

  26. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  27. Dekel, O., Ran, G.B., Shamir, O., Xiao, L.: Optimal distributed online prediction using mini-batches. JMLR 13(1), 165–202 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)

    Google Scholar 

  29. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of IEEE ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  30. He, K., Girshick, R., Dollár, P.: Rethinking ImageNet pre-training, arXiv preprint arXiv:1811.08883 (2018)

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  32. Yao, Z., Gholami, A., Lei, Q., Keutzer, K., Mahoney, M.W.: Hessian-based analysis of large batch training and robustness to adversaries. In: NeurIPS (2018)

    Google Scholar 

  33. Lee, J.D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M.I., Recht, B.: First-order methods almost always avoid saddle points, ArXiv, vol. abs/1710.07406 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueshuang Xiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 672 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, M., Xu, Y., Bao, W., Xiang, X. (2021). Training Few-Shot Classification via the Perspective of Minibatch and Pretraining. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics