[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ScaleNet: An Unsupervised Representation Learning Method for Limited Information

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2021)

Abstract

Although large-scale labeled data are essential for deep convolutional neural networks (ConvNets) to learn high-level semantic visual representations, it is time-consuming and impractical to collect and annotate large-scale datasets. A simple and efficient unsupervised representation learning method named ScaleNet based on multi-scale images is proposed in this study to enhance the performance of ConvNets when limited information is available. The input images are first resized to a smaller size and fed to the ConvNet to recognize the rotation degree. Next, the ConvNet learns the rotation-prediction task for the original size images based on the parameters transferred from the previous model. The CIFAR-10 and ImageNet datasets are examined on different architectures such as AlexNet and ResNet50 in this study. The current study demonstrates that specific image features, such as Harris corner information, play a critical role in the efficiency of the rotation-prediction task. The ScaleNet supersedes the RotNet by \(\approx 7\%\) in the limited CIFAR-10 dataset. The transferred parameters from a ScaleNet model with limited data improve the ImageNet Classification task by about \(6\%\) compared to the RotNet model. This study shows the capability of the ScaleNet method to improve other cutting-edge models such as SimCLR by learning effective features for classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdillah, B., Jati, G., Jatmiko, W.: Improvement CNN performance by edge detection preprocessing for vehicle classification problem. In: MHS, pp. 1–7. IEEE Press, Nagoya (2018)

    Google Scholar 

  2. Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: ICLR. OpenReview.net, Addis Ababa (2019)

    Google Scholar 

  3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NIPS, pp. 9912–9924. MIT Press, Cambridge (2020)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR, California (2020)

    Google Scholar 

  7. Chen, T., Zhai, X., Ritter, M., Lucic, M., Houlsby, N.: Self-supervised gans via auxiliary rotation loss. In: CVPR, pp. 12154–12163. IEEE Press, California (2019)

    Google Scholar 

  8. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR, pp. 15750–15758. IEEE Press (2021)

    Google Scholar 

  9. Cubuk, E.D., Sendek, A.D., Reed, E.J.: Screening billions of candidates for solid lithium-ion conductors: a transfer learning approach for small data. J. Chem. Phys. 150(21), 214701 (2019)

    Article  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE Press, Georgia (2009)

    Google Scholar 

  11. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV, pp. 1422–1430. IEEE Press, Santiago (2015)

    Google Scholar 

  12. Feng, Z., Xu, C., Tao, D.: Self-supervised representation learning by rotation feature decoupling. In: CVPR, pp. 10364–10374. IEEE Press, California (2019)

    Google Scholar 

  13. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)

    Article  Google Scholar 

  14. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR. OpenReview.net, British Columbia (2018)

    Google Scholar 

  15. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448. IEEE Press, Santiago (2015)

    Google Scholar 

  16. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587. IEEE Press, Ohio (2014)

    Google Scholar 

  17. Grambow, C.A., Li, Y.P., Green, W.H.: Accurate thermochemistry with small data sets: a bond additivity correction and transfer learning approach. J. Phys. Chem. A 123(27), 5826–5835 (2019)

    Article  Google Scholar 

  18. Grill, J.B., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: NIPS, pp. 21271–21284. MIT Press, Cambridge (2020)

    Google Scholar 

  19. Harris, C.G., Stephens, M., et al.: A combined corner and edge detector. In: AVC, pp. 1–6. Alvey Vision Club, Manchester (1988)

    Google Scholar 

  20. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738. IEEE Press, Seattle (2020)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Press, Nevada (2016)

    Google Scholar 

  22. Hu, G., Peng, X., Yang, Y., Hospedales, T.M., Verbeek, J.: Frankenstein: learning deep face representations using small data. IEEE Trans. Image Process. 27(1), 293–303 (2017)

    Article  MathSciNet  Google Scholar 

  23. Inoue, H.: Data augmentation by pairing samples for images classification (2018)

    Google Scholar 

  24. Jenni, S., Jin, H., Favaro, P.: Steering self-supervised feature learning beyond local pixel statistics. In: CVPR, pp. 6408–6417. IEEE Press, California (2020)

    Google Scholar 

  25. Jing, L., Yang, X., Liu, J., Tian, Y.: Self-supervised spatiotemporal feature learning via video rotation prediction. arXiv preprint arXiv:1811.11387 (2018)

  26. Kanezaki, A., Matsushita, Y., Nishida, Y.: RotationNet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: CVPR, pp. 5010–5019. IEEE Press, Utah (2018)

    Google Scholar 

  27. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: CVPR, pp. 3128–3137. IEEE Press, Massachusetts (2015)

    Google Scholar 

  28. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: CVPR, pp. 1920–1929. IEEE Press, California (2019)

    Google Scholar 

  29. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105. MIT Press, Cambridge (2012)

    Google Scholar 

  31. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: A lite BERT for self-supervised learning of language representations. In: ICLR. OpenReview.net, Addis Ababa (2020)

    Google Scholar 

  32. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  33. Lee, H., Kwon, H.: Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26(10), 4843–4855 (2017)

    Article  MathSciNet  Google Scholar 

  34. Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U.: Classification with an edge: improving semantic image segmentation with boundary detection. ISPRS J. Photogramm. Remote. Sens. 135, 158–172 (2018)

    Article  Google Scholar 

  35. Mishkin, D., Sergievskiy, N., Matas, J.: Systematic evaluation of convolution neural network advances on the ImageNet. Comput. Vis. Image Underst. 161, 11–19 (2017)

    Article  Google Scholar 

  36. Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: ICMI, pp. 443–449. ACM, Seattle (2015)

    Google Scholar 

  37. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  38. Noroozi, M., Pirsiavash, H., Favaro, P.: Representation learning by learning to count. In: ICCV, pp. 5898–5906. IEEE Press, Venice (2017)

    Google Scholar 

  39. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  40. Rajpurkar, P., et al.: AppendiXNet: deep learning for diagnosis of appendicitis from a small dataset of CT exams using video pretraining. Sci. Rep. 10(1), 1–7 (2020)

    Article  Google Scholar 

  41. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99. MIT Press, Cambridge (2015)

    Google Scholar 

  42. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  43. Shijie, J., Ping, W., Peiyi, J., Siping, H.: Research on data augmentation for image classification based on convolution neural networks. In: CAC, pp. 4165–4170. IEEE Press, Jinan (2017)

    Google Scholar 

  44. Soekhoe, D., van der Putten, P., Plaat, A.: On the impact of data set size in transfer learning using deep neural networks. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds.) IDA 2016. LNCS, vol. 9897, pp. 50–60. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46349-0_5

    Chapter  Google Scholar 

  45. Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image recognition. arXiv preprint arXiv:1501.02876, 7(8) (2015)

  46. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742. IEEE Press, Utah (2018)

    Google Scholar 

  47. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks. In: NIPS, pp. 3320–3328. MIT Press, Cambridge (2014)

    Google Scholar 

  48. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks. arXiv preprint arXiv:1708.03888 (2017)

  49. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  50. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: NIPS, pp. 487–495. MIT Press, Cambridge (2014)

    Google Scholar 

  51. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This study is supported by Google Cloud Platform (GCP) Research by providing credit supports to implement all deep learning algorithms related to SimCLR and ImageNet using virtual machines. The author would like to thank J. David Frost, Kevin Tynes, and Russell Strauss for their feedback on the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahdi Roozbahani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H., Roozbahani, M.M. (2021). ScaleNet: An Unsupervised Representation Learning Method for Limited Information. In: Bauckhage, C., Gall, J., Schwing, A. (eds) Pattern Recognition. DAGM GCPR 2021. Lecture Notes in Computer Science(), vol 13024. Springer, Cham. https://doi.org/10.1007/978-3-030-92659-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92659-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92658-8

  • Online ISBN: 978-3-030-92659-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics