[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

AUPro: Multi-label Facial Action Unit Proposal Generation for Sequence-Level Analysis

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

  • 1813 Accesses

Abstract

Facial action unit (AU) plays an essential role in human facial behavior analysis. Despite the progress made in frame-level AU analysis, the discrete classification results provided by previous work are not explicit enough for the analysis required by many real-world applications, and as AU is a dynamic process, sequence-level analysis maintaining a global view has yet been gravely ignored in the literature. To fill in the blank, we propose a multi-label AU proposal generation task for sequence-level facial action analysis. To tackle the task, we design AUPro, which takes a video clip as input and directly generates proposals for each AU category. Extensive experiments conducted on two commonly used AU benchmark datasets, BP4D and DISFA, show the superiority of our proposed method.

Y. Chen and J. Zhang—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017 (2017)

    Google Scholar 

  2. Chen, Y., Wu, H., Wang, T., Wang, Y., Liang, Y.: Cross-modal representation learning for lightweight and accurate facial action unit detection. IEEE Robot. Autom. Lett. 6(4), 7619–7626 (2021)

    Article  Google Scholar 

  3. Cohn, J.F., Schmidt, K.: The timing of facial motion in posed and spontaneous smiles. In: Active Media Technology, pp. 57–69. World Scientific (2003)

    Google Scholar 

  4. Ekman, P., Friesen, W.: Facial action coding system: a technique for the measurement of facial movement (1978)

    Google Scholar 

  5. Gao, J., Yang, Z., Chen, K., Sun, C., Nevatia, R.: Turn TAP: temporal unit regression network for temporal action proposals. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017 (2017)

    Google Scholar 

  6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, vol. 9, pp. 249–256. PMLR (2010)

    Google Scholar 

  7. He, J., Li, D., Yang, B., Cao, S., Sun, B., Yu, L.: Multi view facial action unit detection based on CNN and BLSTM-RNN. In: International Conference on Automatic Face and Gesture Recognition (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  9. Li, G., Zhu, X., Zeng, Y., Wang, Q., Lin, L.: Semantic relationships guided representation learning for facial action unit recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8594–8601 (2019)

    Google Scholar 

  10. Li, W., Abtahi, F., Zhu, Z.: Action unit detection with region adaptation, multi-labeling learning and optimal temporal fusing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Lin, C., et al.: Fast learning of temporal action proposal via dense boundary generator. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11499–11506 (2020)

    Google Scholar 

  12. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: BMN: boundary-matching network for temporal action proposal generation (2019)

    Google Scholar 

  13. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_1

    Chapter  Google Scholar 

  14. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2019)

    Google Scholar 

  15. Mavadati, S.M., Mahoor, M.H., Bartlett, K., Trinh, P., Cohn, J.F.: DISFA: a spontaneous facial action intensity database. IEEE Trans. Affect. Comput. 4, 151–160 (2013)

    Article  Google Scholar 

  16. Niu, X., Han, H., Shan, S., Chen, X.: Multi-label co-regularization for semi-supervised facial action unit recognition. arXiv preprint arXiv:1910.11012 (2019)

  17. Schmidt, K.L., Ambadar, Z., Cohn, J.F., Reed, L.I.: Movement differences between deliberate and spontaneous facial expressions: Zygomaticus major action in smiling. J. Nonverbal Behav. 30(1), 37–52 (2006)

    Article  Google Scholar 

  18. Senechal, T., Rapp, V., Salam, H., Seguier, R., Bailly, K., Prevost, L.: Combining AAM coefficients with LGBP histograms in the multi-kernel SVM framework to detect facial action units. In 2011 IEEE International Conference on Automatic Face Gesture Recognition (FG), pp. 860–865 (2011)

    Google Scholar 

  19. Shou, Z., Wang, D., Chang, S.-F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (2016)

    Google Scholar 

  20. Tong, Y., Liao, W., Ji, Q.: Facial action unit recognition by exploiting their dynamic and semantic relationships. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1683–1699 (2007)

    Article  Google Scholar 

  21. Walecki, R., Rudovic, O., Pavlovic, V., Pantic, M.: Copula ordinal regression framework for joint estimation of facial action unit intensity. IEEE Trans. Affect. Comput. 10(3), 297–312 (2017)

    Article  Google Scholar 

  22. Wang, C., Wang, S.: Personalized multiple facial action unit recognition through generative adversarial recognition network. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 302–310 (2018)

    Google Scholar 

  23. Zhang, X., et al.: BP4D-Spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)

    Article  Google Scholar 

  24. Zhang, Y., Jiang, H., Wu, B., Fan, Y., Ji, Q.: Context-aware feature and label fusion for facial action unit intensity estimation with partially labeled data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 733–742 (2019)

    Google Scholar 

  25. Zhao, K., Chu, W., Zhang, H.: Deep region and multi-label learning for facial action unit detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  26. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017 (2017)

    Google Scholar 

  27. Zhu, Y., De la Torre, F., Cohn, J.F., Zhang, Y.J.: Dynamic cascades with bidirectional bootstrapping for action unit detection in spontaneous facial behavior. IEEE Trans. Affect. Comput. 2(2), 79–91 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is in part supported by the PKU-NTU Joint Research Institute (JRI) sponsored by a donation from the Ng Teng Fong Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Zhang, J., Chen, D., Wang, T., Wang, Y., Liang, Y. (2021). AUPro: Multi-label Facial Action Unit Proposal Generation for Sequence-Level Analysis. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics