[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Organization of Objects’ Spatial Positions in Manipulator Space from Single RGB-D Camera

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

  • 1739 Accesses

Abstract

For the grasp task in physical environment, it is important for the manipulator to know the objects’ spatial positions with as few sensors as possible in real time. This work proposed an effective framework to organize the objects’ spatial positions in the manipulator 3D workspace with a single RGB-D camera robustly and fast. It mainly contains two steps: (1) a 3D reconstruction strategy for objects’ contours obtained in environment; (2) a distance-restricted outlier point elimination strategy to reduce the reconstruction errors caused by sensor noise. The first step ensures fast object extraction and 3D reconstruction from scene image, and the second step contributes to more accurate reconstructions by eliminating outlier points from initial result obtained by the first step. We validated the proposed method in a physical system containing a Kinect 2.0 RGB-D camera and a Mico2 robot. Experiments show that the proposed method can run in quasi real time on a common PC and it outperforms the traditional 3D reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boby, R.A., Saha, S.K.: Single image based camera calibration and pose estimation of the end-effector of a robot. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2435–2440. IEEE (2016)

    Google Scholar 

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection (2020). arXiv preprint arXiv:2004.10934

  3. Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., et al.: Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3364–3372 (2016)

    Google Scholar 

  4. Cao, Z., Sheikh, Y., Banerjee, N.K.: Real-time scalable 6D of pose estimation for textureless objects. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2441–2448. IEEE (2016)

    Google Scholar 

  5. Collet, A., Martinez, M., Srinivasa, S.S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Rob. Res. 30(10), 1284–1306 (2011)

    Article  Google Scholar 

  6. Durović, P., Grbić, R., Cupec, R.: Visual servoing for low-cost scara robots using an rgb-d camera as the only sensor. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije 58(4), 495–505 (2017)

    Google Scholar 

  7. Gao, G., Lauri, M., Wang, Y., Hu, X., Zhang, J., Frintrop, S.: 6D object pose regression via supervised learning on point clouds. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3643–3649. IEEE (2020)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. Jones, M., Vernon, D.: Using neural networks to learn hand-eye co-ordination. Neural Comput. Appl. 2(1), 2–12 (1994)

    Article  Google Scholar 

  10. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: Making rgb-based 3D detection and 6D pose estimation great again. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1521–1529 (2017)

    Google Scholar 

  11. Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 205–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_13

    Chapter  Google Scholar 

  12. Kuan, Y.W., Ee, N.O., Wei, L.S.: Comparative study of intel r200, kinect v2, and primesense rgb-d sensors performance outdoors. IEEE Sens. J. 19(19), 8741–8750 (2019)

    Article  Google Scholar 

  13. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Rob. Res. 37(4–5), 421–436 (2018)

    Article  Google Scholar 

  14. Li, E., Mo, H., Xu, D., Li, H.: Image projective invariants. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1144–1157 (2018)

    Article  Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Meng, Y., Zhuang, H.: Self-calibration of camera-equipped robot manipulators. Int. J. Rob. Res. 20(11), 909–921 (2001)

    Article  Google Scholar 

  17. Michel, F., et al.: Global hypothesis generation for 6D object pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 462–471 (2017)

    Google Scholar 

  18. Mindspore: Mask-rcnn-mobilenetv1. Website (2020). https://gitee.com/mindspore/mindspore/blob/r1.1/model_zoo/official/cv/maskrcnn_mobilenetv1/src/maskrcnn_mobilenetv1/mobilenetv1.py

  19. Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-dof object pose from semantic keypoints. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2011–2018. IEEE (2017)

    Google Scholar 

  20. Rad, M., Lepetit, V.: Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828–3836 (2017)

    Google Scholar 

  21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018). arXiv preprint arXiv:1804.02767

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  24. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  25. Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 530–535 (1997)

    Article  Google Scholar 

  26. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 292–301 (2018)

    Google Scholar 

  27. Wang, C., Xu, D., Zhu, Y., Martín-Martín, R., Lu, C., Fei-Fei, L., Savarese, S.: Densefusion: 6D object pose estimation by iterative dense fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3343–3352 (2019)

    Google Scholar 

  28. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3D pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3109–3118 (2015)

    Google Scholar 

  29. Wu, H., Tizzano, W., Andersen, T.T., Andersen, N.A., Ravn, O.: Hand-eye calibration and inverse kinematics of robot arm using neural network. In: Kim, J.-H., Matson, E.T., Myung, H., Xu, P., Karray, F. (eds.) Robot Intelligence Technology and Applications 2. AISC, vol. 274, pp. 581–591. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05582-4_50

    Chapter  Google Scholar 

  30. Zeng, A., et al.: Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1386–1383. IEEE (2017)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Research & Development Program of China (No. 2018AAA0102902), the National Natural Science Foundation of China (NSFC) (No.61873269), the Beijing Natural Science Foundation (No: L192005), the CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-20202-027A), the Guangxi Key Research and Development Program (AB18221011, AB21075004, AD18281002, AD19110137), the Natural Science Foundation of Guangxi of China (No: 2020GXNSFAA297061, 2019GXNSFDA185006, 2019GXN SFDA185007), Guangxi Key Laboratory of Intelligent Processing of Computer Images and Graphics (No GIIP201702) and Guangxi Key Laboratory of Trusted Software (NO kx201621,kx201715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Yang, M., Li, J., Qiang, B., Chen, J., Jia, Q. (2021). Fast Organization of Objects’ Spatial Positions in Manipulator Space from Single RGB-D Camera. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics