Abstract
Event-Related Potentials (ERPs) based binary BCI systems help enable users to control external devices through brain signals responding to stimulus. However, the external properties of the auditory or visual stimuli in the typical oddball-paradigm are loud and large for a user, which often brings psychological discomfort. In this study, we proposed novel non-oddball BCI paradigms where the intensity of external properties is greatly minimized while maintaining the system performance. To compensate for the loss of accuracy from the diminutive stimulus, users were instructed to generate discriminant ERP responses by performing a voluntary mental task. As the result, task-relevant endogenous components were investigated by the certain mental task and greatly enhanced system performance. The decoding accuracies of proposed CNN with data augmentation technique were 77.8% and 76.7% for the non-oddball visual and auditory paradigms, respectively, which significantly outperformed the linear classifier model. These results open up novel avenues for practical ERP systems, which could increase the usability of current brain-computer interfaces remarkably.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain-computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)
Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)
Squires, N.K., Squires, K.C., Hillyard, S.A.: Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38(4), 387–401 (1975)
Yeom, S.K., Fazli, S., Müller, K.R., Lee, S.W.: An efficient ERP-based brain-computer interface using random set presentation and face familiarity. PloS one 9(11), e111157 (2014)
Li, Q., Liu, S., Li, J., Bai, O.: Use of a green familiar faces paradigm improves P300-speller brain-computer interface performance. PloS one 10(6), e0130325 (2015)
Li, Q., Lu, Z., Gao, N., Yang, J.: Optimizing the performance of the visual P300-speller through active mental tasks based on color distinction and modulation of task difficulty. Front. Human Neurosci. 13, 130 (2019)
Lee, M.H., Williamson, J., Kee, Y.J., Fazli, S., Lee, S.W.: Robust detection of event-related potentials in a user-voluntary short-term imagery task. PloS one 14(12), e0226236 (2019)
Lee, M.H., Williamson, J., Lee, Y.E., Lee, S.W.: Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. NeuroReport 29(15), 1301 (2018)
Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3D residual networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3154–3160 (2017)
Kwon, O.Y., Lee, M.H., Guan, C., Lee, S.W.: Subject-independent brain-computer interfaces based on deep convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31(10), 3839–3852 (2019)
Kang, Y., Hyndman, R.J., Li, F.: Gratis: Generating time series with diverse and controllable characteristics. Stat. Anal. Data Mining ASA Data Sci. J. 13(4), 354–376 (2020)
Lee, M.H., et al.: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience 8(5), giz002 (2019)
Bang, J.S., Lee, M.H., Fazli, S., Guan, C., Lee, S.W.,: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2021)
Suk, H.I., Lee, S.W.: A novel bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 286–299 (2012)
Lee, M.H., et al.: OpenBMI: a real-time data analysis toolbox for brain-machine interfaces. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 001884–001887. IEEE (2016)
Blankertz, B., Lemm, S., Treder, M., Haufe, S., Muller, K.R.: Single-trial analysis and classification of ERP components:a tutorial. NeuroImage 56(2), 814–825 (2011)
Wenzel, M.A., Almeida, I., Blankertz, B.: Is neural activity detected by ERP-based brain-computer interfaces task specific? PloS One 11(10), e0165556 (2016)
Lee, M.H., Williamson, J., Won, D.O., Fazli, S., Lee, S.W.: A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1443–1459 (2018)
Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)
Wang, F., Zhong, S., Peng, J., Jiang, J., Liu, Y.: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 82–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_8
Kübler, A., Birbaumer, N.: Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients. Clin. Neurophysiol. 119(11), 2658–2666 (2008)
Jin, J., et al.: The study of generic model set for reducing calibration time in P300-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 28(1), 3–12 (2019)
Jin, J., Chen, Z., Xu, R., Miao, Y., Wang, X., Jung, T.P.: Developing a novel tactile P300 brain-computer interface with a cheeks-stim paradigm. IEEE Trans. Biomed. Eng. 67(9), 2585–2593 (2020)
Li, A., Alimanov, K., Fazli, S., Lee, M.H.: Towards paradigm-independent brain computer interfaces. In: 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–6. IEEE (2020)
Lee, M.H., Fazli, S., Mehnert, J., Lee, S.W.: Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI. Pattern Recogn. 48(8), 2725–2737 (2015)
Acknowledgments
This work was supported by Faculty Development Competitive Research Grant Program (No. 080420FD1909) at Nazarbayev University and by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00451).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Saparbayeva, M., Shomanov, A., Lee, MH. (2021). A Novel Binary BCI Systems Based on Non-oddball Auditory and Visual Paradigms. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-92238-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92237-5
Online ISBN: 978-3-030-92238-2
eBook Packages: Computer ScienceComputer Science (R0)