[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Binary BCI Systems Based on Non-oddball Auditory and Visual Paradigms

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Abstract

Event-Related Potentials (ERPs) based binary BCI systems help enable users to control external devices through brain signals responding to stimulus. However, the external properties of the auditory or visual stimuli in the typical oddball-paradigm are loud and large for a user, which often brings psychological discomfort. In this study, we proposed novel non-oddball BCI paradigms where the intensity of external properties is greatly minimized while maintaining the system performance. To compensate for the loss of accuracy from the diminutive stimulus, users were instructed to generate discriminant ERP responses by performing a voluntary mental task. As the result, task-relevant endogenous components were investigated by the certain mental task and greatly enhanced system performance. The decoding accuracies of proposed CNN with data augmentation technique were 77.8% and 76.7% for the non-oddball visual and auditory paradigms, respectively, which significantly outperformed the linear classifier model. These results open up novel avenues for practical ERP systems, which could increase the usability of current brain-computer interfaces remarkably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain-computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  2. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)

    Article  Google Scholar 

  3. Squires, N.K., Squires, K.C., Hillyard, S.A.: Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38(4), 387–401 (1975)

    Article  Google Scholar 

  4. Yeom, S.K., Fazli, S., Müller, K.R., Lee, S.W.: An efficient ERP-based brain-computer interface using random set presentation and face familiarity. PloS one 9(11), e111157 (2014)

    Article  Google Scholar 

  5. Li, Q., Liu, S., Li, J., Bai, O.: Use of a green familiar faces paradigm improves P300-speller brain-computer interface performance. PloS one 10(6), e0130325 (2015)

    Article  Google Scholar 

  6. Li, Q., Lu, Z., Gao, N., Yang, J.: Optimizing the performance of the visual P300-speller through active mental tasks based on color distinction and modulation of task difficulty. Front. Human Neurosci. 13, 130 (2019)

    Article  Google Scholar 

  7. Lee, M.H., Williamson, J., Kee, Y.J., Fazli, S., Lee, S.W.: Robust detection of event-related potentials in a user-voluntary short-term imagery task. PloS one 14(12), e0226236 (2019)

    Article  Google Scholar 

  8. Lee, M.H., Williamson, J., Lee, Y.E., Lee, S.W.: Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. NeuroReport 29(15), 1301 (2018)

    Article  Google Scholar 

  9. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3D residual networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3154–3160 (2017)

    Google Scholar 

  10. Kwon, O.Y., Lee, M.H., Guan, C., Lee, S.W.: Subject-independent brain-computer interfaces based on deep convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31(10), 3839–3852 (2019)

    Article  Google Scholar 

  11. Kang, Y., Hyndman, R.J., Li, F.: Gratis: Generating time series with diverse and controllable characteristics. Stat. Anal. Data Mining ASA Data Sci. J. 13(4), 354–376 (2020)

    Article  Google Scholar 

  12. Lee, M.H., et al.: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience 8(5), giz002 (2019)

    Article  Google Scholar 

  13. Bang, J.S., Lee, M.H., Fazli, S., Guan, C., Lee, S.W.,: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  14. Suk, H.I., Lee, S.W.: A novel bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 286–299 (2012)

    Article  Google Scholar 

  15. Lee, M.H., et al.: OpenBMI: a real-time data analysis toolbox for brain-machine interfaces. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 001884–001887. IEEE (2016)

    Google Scholar 

  16. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Muller, K.R.: Single-trial analysis and classification of ERP components:a tutorial. NeuroImage 56(2), 814–825 (2011)

    Article  Google Scholar 

  17. Wenzel, M.A., Almeida, I., Blankertz, B.: Is neural activity detected by ERP-based brain-computer interfaces task specific? PloS One 11(10), e0165556 (2016)

    Article  Google Scholar 

  18. Lee, M.H., Williamson, J., Won, D.O., Fazli, S., Lee, S.W.: A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1443–1459 (2018)

    Article  Google Scholar 

  19. Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)

    Article  MathSciNet  Google Scholar 

  20. Wang, F., Zhong, S., Peng, J., Jiang, J., Liu, Y.: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 82–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_8

    Chapter  Google Scholar 

  21. Kübler, A., Birbaumer, N.: Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients. Clin. Neurophysiol. 119(11), 2658–2666 (2008)

    Article  Google Scholar 

  22. Jin, J., et al.: The study of generic model set for reducing calibration time in P300-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 28(1), 3–12 (2019)

    Article  Google Scholar 

  23. Jin, J., Chen, Z., Xu, R., Miao, Y., Wang, X., Jung, T.P.: Developing a novel tactile P300 brain-computer interface with a cheeks-stim paradigm. IEEE Trans. Biomed. Eng. 67(9), 2585–2593 (2020)

    Article  Google Scholar 

  24. Li, A., Alimanov, K., Fazli, S., Lee, M.H.: Towards paradigm-independent brain computer interfaces. In: 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–6. IEEE (2020)

    Google Scholar 

  25. Lee, M.H., Fazli, S., Mehnert, J., Lee, S.W.: Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI. Pattern Recogn. 48(8), 2725–2737 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Faculty Development Competitive Research Grant Program (No. 080420FD1909) at Nazarbayev University and by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saparbayeva, M., Shomanov, A., Lee, MH. (2021). A Novel Binary BCI Systems Based on Non-oddball Auditory and Visual Paradigms. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics