[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Indoor Positioning System for Ubiquitous Computing Environments

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2021 (IDEAL 2021)

Abstract

We developed an Indoor Positioning System (IPS) as part of the effort of creating Ubicomp applications with user interfaces distributed across different co-located devices. It relies on a Client that runs on the devices that we intend to locate and a Server that determines their positions. It currently supports three positioning methods: fingerprinting, trilateration and proximity. Bluetooth Low Energy and Wi-Fi are used as the underlying technologies for the positioning methods. We tested multiple machine learning algorithms during the development of the system to choose the ones providing satisfactory results. A Mean Absolute Error around or below 1 m and 95th percentile errors in the 2 m range were considered acceptable according to the type of target applications. We were also able to integrate the system into our framework and built a cross-device application that took advantage of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/kamalshadi/Localization.

References

  1. Mueller, F., et al.: Proxemics play: understanding proxemics for designing digital play experiences. In: Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS, pp. 533–542. Association for Computing Machinery (2014). https://doi.org/10.1145/2598510.2598532

  2. Indoor fingerprint positioning based on Wi-Fi: An overview (May 2017). https://doi.org/10.3390/ijgi6050135

  3. SensorManager - Android Developers (2021). https://developer.android.com/reference/android/hardware/SensorManager

  4. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. Technical Report (2000). https://doi.org/10.1109/infcom.2000.832252

  5. Ballendat, T., Marquardt, N., Greenberg, S.: Proxemic interaction: Designing for a proximity and orientation-aware environment. In: ACM International Conference on Interactive Tabletops and Surfaces, ITS 2010, pp. 121–130 (2010). https://doi.org/10.1145/1936652.1936676

  6. de Blasio, G., Quesada-Arencibia, A., García, C.R., Molina-Gil, J.M., Caballero-Gil, C.: Study on an indoor positioning system for harsh environments based on Wi-Fi and bluetooth low energy. Sensors (Switzerland) 17(6), 1299 (2017). https://doi.org/10.3390/s17061299, http://www.mdpi.com/1424-8220/17/6/1299

  7. Brena, R.F., García-Vázquez, J.P., Galván-Tejada, C.E., Muñoz-Rodriguez, D., Vargas-Rosales, C., Fangmeyer, J.: Evolution of Indoor Positioning Technologies: a survey (2017). https://doi.org/10.1155/2017/2630413

  8. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995). https://doi.org/10.1137/0916069

  9. Faragher, R., Harle, R.: An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In: Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), pp. 201–210 (2014). http://www.ion.org/publications/abstract.cfm?jp=p&articleID=12411

  10. Faragher, R., Harle, R.: Location fingerprinting with bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015). https://doi.org/10.1109/JSAC.2015.2430281, http://ieeexplore.ieee.org/document/7103024/

  11. Feldmann, S., Kyamakya, K., Zapater, A., Lue, Z.: An indoor Bluetooth-based positioning system: concept, implementation and experimental evaluation. In: Proceedings of the International Conference on Wireless Networks, pp. 109–113 (2003)

    Google Scholar 

  12. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., Wang, M.: Proxemic interactions: the new ubicomp? interactions 18(1), 42 (2011). https://doi.org/10.1145/1897239.1897250, http://portal.acm.org/citation.cfm?doid=1897239.1897250

  13. Kantar TNS Germany: The Connected Consumer (2019). https://www.google.com/publicdata/explore?ds=dg8d1eetcqsb1_

  14. Kim, D.Y., Kim, S.H., Choi, D., Jin, S.H.: Accurate indoor proximity zone detection based on time window and frequency with bluetooth low energy. Procedia Comput. Sci. 56(1), 88–95 (2015). https://doi.org/10.1016/j.procs.2015.07.199

  15. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man. Mach. Stud. 7(1), 1–13 (1975). https://doi.org/10.1016/S0020-7373(75)80002-2, https://linkinghub.elsevier.com/retrieve/pii/S0020737375800022

  16. Mautz, R.: Indoor Positioning Technologies. Ph.D. thesis (2012). https://doi.org/10.3929/ethz-a-007313554, http://e-collection.library.ethz.ch/eserv/eth:5659/eth-5659-01.pdf

  17. Orujov, F., Maskeliūnas, R., Damaševičius, R., Wei, W., Li, Y.: Smartphone based intelligent indoor positioning using fuzzy logic. Future Gener. Comput. Syst. 89, 335–348 (2018). https://doi.org/10.1016/j.future.2018.06.030

  18. Rodden, T.: Living in a ubiquitous world. Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 366(1881), 3837–3838 (2008). https://doi.org/10.1098/rsta.2008.0146

  19. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2, http://www.nature.com/articles/s41592-019-0686-2

  20. WAMP: The Web Application Messaging Protocol - Web Application Messaging Protocol version 2 documentation (2021). https://wamp-proto.org/

  21. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B. ACM Trans. Math. Softw. 23(4), 550–560 (1997). https://doi.org/10.1145/279232.279236

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro Albuquerque Santos , Rui Porfírio , Rui Neves Madeira or Nuno Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, P.A., Porfírio, R., Madeira, R.N., Correia, N. (2021). Indoor Positioning System for Ubiquitous Computing Environments. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91608-4_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91607-7

  • Online ISBN: 978-3-030-91608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics