Abstract
We developed an Indoor Positioning System (IPS) as part of the effort of creating Ubicomp applications with user interfaces distributed across different co-located devices. It relies on a Client that runs on the devices that we intend to locate and a Server that determines their positions. It currently supports three positioning methods: fingerprinting, trilateration and proximity. Bluetooth Low Energy and Wi-Fi are used as the underlying technologies for the positioning methods. We tested multiple machine learning algorithms during the development of the system to choose the ones providing satisfactory results. A Mean Absolute Error around or below 1 m and 95th percentile errors in the 2 m range were considered acceptable according to the type of target applications. We were also able to integrate the system into our framework and built a cross-device application that took advantage of it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mueller, F., et al.: Proxemics play: understanding proxemics for designing digital play experiences. In: Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS, pp. 533–542. Association for Computing Machinery (2014). https://doi.org/10.1145/2598510.2598532
Indoor fingerprint positioning based on Wi-Fi: An overview (May 2017). https://doi.org/10.3390/ijgi6050135
SensorManager - Android Developers (2021). https://developer.android.com/reference/android/hardware/SensorManager
Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. Technical Report (2000). https://doi.org/10.1109/infcom.2000.832252
Ballendat, T., Marquardt, N., Greenberg, S.: Proxemic interaction: Designing for a proximity and orientation-aware environment. In: ACM International Conference on Interactive Tabletops and Surfaces, ITS 2010, pp. 121–130 (2010). https://doi.org/10.1145/1936652.1936676
de Blasio, G., Quesada-Arencibia, A., García, C.R., Molina-Gil, J.M., Caballero-Gil, C.: Study on an indoor positioning system for harsh environments based on Wi-Fi and bluetooth low energy. Sensors (Switzerland) 17(6), 1299 (2017). https://doi.org/10.3390/s17061299, http://www.mdpi.com/1424-8220/17/6/1299
Brena, R.F., García-Vázquez, J.P., Galván-Tejada, C.E., Muñoz-Rodriguez, D., Vargas-Rosales, C., Fangmeyer, J.: Evolution of Indoor Positioning Technologies: a survey (2017). https://doi.org/10.1155/2017/2630413
Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995). https://doi.org/10.1137/0916069
Faragher, R., Harle, R.: An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In: Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), pp. 201–210 (2014). http://www.ion.org/publications/abstract.cfm?jp=p&articleID=12411
Faragher, R., Harle, R.: Location fingerprinting with bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015). https://doi.org/10.1109/JSAC.2015.2430281, http://ieeexplore.ieee.org/document/7103024/
Feldmann, S., Kyamakya, K., Zapater, A., Lue, Z.: An indoor Bluetooth-based positioning system: concept, implementation and experimental evaluation. In: Proceedings of the International Conference on Wireless Networks, pp. 109–113 (2003)
Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., Wang, M.: Proxemic interactions: the new ubicomp? interactions 18(1), 42 (2011). https://doi.org/10.1145/1897239.1897250, http://portal.acm.org/citation.cfm?doid=1897239.1897250
Kantar TNS Germany: The Connected Consumer (2019). https://www.google.com/publicdata/explore?ds=dg8d1eetcqsb1_
Kim, D.Y., Kim, S.H., Choi, D., Jin, S.H.: Accurate indoor proximity zone detection based on time window and frequency with bluetooth low energy. Procedia Comput. Sci. 56(1), 88–95 (2015). https://doi.org/10.1016/j.procs.2015.07.199
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man. Mach. Stud. 7(1), 1–13 (1975). https://doi.org/10.1016/S0020-7373(75)80002-2, https://linkinghub.elsevier.com/retrieve/pii/S0020737375800022
Mautz, R.: Indoor Positioning Technologies. Ph.D. thesis (2012). https://doi.org/10.3929/ethz-a-007313554, http://e-collection.library.ethz.ch/eserv/eth:5659/eth-5659-01.pdf
Orujov, F., Maskeliūnas, R., Damaševičius, R., Wei, W., Li, Y.: Smartphone based intelligent indoor positioning using fuzzy logic. Future Gener. Comput. Syst. 89, 335–348 (2018). https://doi.org/10.1016/j.future.2018.06.030
Rodden, T.: Living in a ubiquitous world. Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 366(1881), 3837–3838 (2008). https://doi.org/10.1098/rsta.2008.0146
Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2, http://www.nature.com/articles/s41592-019-0686-2
WAMP: The Web Application Messaging Protocol - Web Application Messaging Protocol version 2 documentation (2021). https://wamp-proto.org/
Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B. ACM Trans. Math. Softw. 23(4), 550–560 (1997). https://doi.org/10.1145/279232.279236
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Santos, P.A., Porfírio, R., Madeira, R.N., Correia, N. (2021). Indoor Positioning System for Ubiquitous Computing Environments. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_59
Download citation
DOI: https://doi.org/10.1007/978-3-030-91608-4_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91607-7
Online ISBN: 978-3-030-91608-4
eBook Packages: Computer ScienceComputer Science (R0)