Abstract
Hitherto, the concept of Enterprise Architecture (EA) Smells has been proposed to assess quality flaws in EAs and their models. Together with this new concept, a catalog of different EA Smells has been published and a first prototype was developed. However, this prototype is limited to ArchiMate and is not able to assess models adhering to other EA modeling languages. Moreover, the prototype is not integrate-able with other EA tools. Therefore, we propose to enhance the extensible Graph-based Enterprise Architecture Analysis (eGEAA) platform that relies on Knowledge Graphs with EA Smell detection capabilities. To align these two approaches, we show in this paper, how ArchiMate models can be transformed into Knowledge Graphs and provide a set of queries on the Knowledge Graph representation that are able to detect EA Smells. This enables enterprise architects to assess EA Smells on all types of EA models as long as there is a Knowledge Graph representation of the model. Finally, we evaluate the Knowledge Graph based EA Smell detection by analyzing a set of 347 EA models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aier, S.: How clustering enterprise architectures helps to design service oriented architectures. In: 2006 IEEE International Conference on Services Computing (SCC 2006), pp. 269–272. IEEE (2006)
Barbosa, A., Santana, A., Hacks, S., Stein, N.V.: A taxonomy for enterprise architecture analysis research. In: 21st International Conference on Enterprise Information Systems, vol. 2, pp. 493–504. SciTePress (2019)
Bebensee, B., Hacks, S.: Applying dynamic bayesian networks for automated modeling in archimate: a realization study. In: 23rd IEEE International Enterprise Distributed Object Computing Workshop, EDOC Workshops 2019, Paris, France, 28–31 October 2019, pp. 17–24. IEEE (2019)
Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and enterprise ai: the promise of an enabling technology. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 26–37. IEEE (2019)
Bork, D., et al.: Requirements engineering for model-based enterprise architecture management with ArchiMate. In: Pergl, R., Babkin, E., Lock, R., Malyzhenkov, P., Merunka, V. (eds.) EOMAS 2018. LNBIP, vol. 332, pp. 16–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00787-4_2
Bork, D., Smajevic, M.: Source code repository of the eGEAA platform (2021). https://github.com/borkdominik/eGEAA
Buschle, M., Johnson, P., Shahzad, K.: The enterprise architecture analysis tool - support for the predictive, probabilistic architecture modeling framework, pp. 3350–3364 (2013)
Cunningham, W.: The wycash portfolio management system. SIGPLAN OOPS Mess. 4(2), 29–30 (1992)
Fensel, D., et al.: Knowledge Graphs - Methodology, Tools and Selected Use Cases. Springer, Germany (2020). https://doi.org/10.1007/978-3-030-37439-6
Florez, H., Sánchez, M., Villalobos, J.: A catalog of automated analysis methods for enterprise models. SpringerPlus 5(1), 1–24 (2016)
Franke, U., Holschke, O., Buschle, M., Narman, P., Rake-Revelant, J.: It consolidation: an optimization approach. In: 2010 14th IEEE International Enterprise Distributed Object Computing Conference Workshops, pp. 21–26 (2010)
Gampfer, F., Jürgens, A., Müller, M., Buchkremer, R.: Past, current and future trends in enterprise architecture-a view beyond the horizon. Comput. Ind. 100, 70–84 (2018)
Garg, A., Kazman, R., Chen, H.M.: Interface descriptions for enterprise architecture. Sci. Comput. Program. 61(1), 4–15 (2006)
Giakoumakis, V., Krob, D., Liberti, L., Roda, F.: Technological architecture evolutions of information systems: trade-off and optimization. Concurr. Eng. 20(2), 127–147 (2012). https://doi.org/10.1177/1063293X12447715
Hacks, S., Hofert, H., Salentin, J., Yeong, Y.C., Lichter, H.: Towards the definition of enterprise architecture debts. In: IEEE 23rd International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 9–16. IEEE (2019). https://doi.org/10.1109/EDOCW.2019.00016
Hacks, S., Lichter, H.: A probabilistic enterprise architecture model evolution. In: 22nd IEEE International Enterprise Distributed Object Computing Conference, EDOC 2018, Stockholm, Sweden, 16–19 October 2018, pp. 51–57. IEEE Computer Society (2018)
Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., Van der Merwe, A., Woitsch, R.: A new paradigm for the continuous alignment of business and it: Combining enterprise architecture modelling and enterprise ontology. Comput. Ind. 79, 77–86 (2016)
Holschke, O., Närman, P., Flores, W.R., Eriksson, E., Schönherr, M.: Using enterprise architecture models and bayesian belief networks for failure impact analysis. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 339–350. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01247-1_35
Iacob, M.E., Jonkers, H.: Quantitative analysis of enterprise architectures. In: Konstantas, D., Bourrieres, J.P., Leonard, M., Boudjlida, N. (eds.) Interoperability of Enterprise Software and Applications, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10.1007/1-84628-152-0_22
Johnson, P., Ekstedt, M., Lagerström, R.: Automatic probabilistic enterprise IT architecture modeling: a dynamic bayesian networks approach. In: Franke, U., Lapalme, J., Johnson, P. (eds.) 20th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 123–129 (2016)
Jugel, D.: An integrative method for decision-making in EA management. In: Zimmermann, A., Schmidt, R., Jain, L.C. (eds.) Architecting the Digital Transformation. ISRL, vol. 188, pp. 289–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49640-1_15
Jugel, D., Kehrer, S., Schweda, C.M., Zimmermann, A.: Providing EA decision support for stakeholders by automated analyses. In: Digital Enterprise Computing 2015, pp. 151–162. GI (2015)
Lagerström, R., Baldwin, C., MacCormack, A., Dreyfus, D.: Visualizing and measuring enterprise architecture: an exploratory BioPharma case. In: Grabis, J., Kirikova, M., Zdravkovic, J., Stirna, J. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 9–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41641-5_2
Lehmann, B.D., Alexander, P., Lichter, H., Hacks, S.: Towards the identification of process anti-patterns in enterprise architecture models. In: 8th International Workshop on Quantitative Approaches to Software Quality in conjunction with the 27th Asia-Pacific Software Engineering Conference (APSEC 2020), vol. 2767, pp. 47–54. CEUR-WS (2020)
López, J.A.H., Cuadrado, J.S.: MAR: a structure-based search engine for models. In: Syriani, E., Sahraoui, H.A., de Lara, J., Abrahão, S. (eds.) MoDELS ’20: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems, Virtual Event, Canada, 2020, pp. 57–67. ACM (2020)
Maccormack, A.D., Lagerstrom, R., Baldwin, C.Y.: A methodology for operationalizing enterprise architecture and evaluating enterprise it flexibility. Harvard Business School working paper series# 15–060 (2015)
Messina, A.: Overview of standard graph file formats. Technical Report, RT-ICAR-PA-2018-06 (2018). http://dx.doi.org/10.13140/RG.2.2.11144.88324
OMG: ArchiMate® 3.1 Specification. The Open Group (2019). http://pubs.opengroup.org/architecture/archimate3-doc/
Österlind, M., Lagerström, R., Rosell, P.: Assessing modifiability in application services using enterprise architecture models – a case study. In: Aier, S., Ekstedt, M., Matthes, F., Proper, E., Sanz, J.L. (eds.) PRET/TEAR -2012. LNBIP, vol. 131, pp. 162–181. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34163-2_10
Pittl, B., Bork, D.: Modeling digital enterprise ecosystems with ArchiMate: a mobility provision case study. In: ICServ 2017. LNCS, vol. 10371, pp. 178–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61240-9_17
Roelens, B., Steenacker, W., Poels, G.: Realizing strategic fit within the business architecture: the design of a process-goal alignment modeling and analysis technique. Softw. Syst. Model. 18(1), 631–662 (2019)
Salentin, J., Hacks, S.: Enterprise architecture smells prototype (2020). https://git.rwth-aachen.de/ba-ea-smells/program
Salentin, J., Hacks, S.: Towards a catalog of enterprise architecture smells. In: Gronau, N., Heine, M., Krasnova, H., Poustcchi, K. (eds.) Entwicklungen, Chancen und Herausforderungen der Digitalisierung: Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik, WI 2020, Potsdam, Germany, 9–11 March 2020, Community Tracks, pp. 276–290. GITO Verlag (2020)
Salentin, J., Lehmann, B., Hacks, S., Alexander, P.: Enterprise architecture smells catalog (2021). https://swc-public.pages.rwth-aachen.de/smells/ea-smells/
Sales, T.P., Guizzardi, G.: Ontological anti-patterns: empirically uncovered error-prone structures in ontology-driven conceptual models. Data Knowl. Eng. 99, 72–104 (2015)
Santana, A., Fischbach, K., Moura, H.: Enterprise architecture analysis and network thinking: A literature review. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 4566–4575. IEEE (2016)
Schoonjans, A.: Social network analysis techniques in enterprise architecture management. Ph.D. thesis, PhD thesis, Ghent University, Ghent (2016)
Singh, P.M., van Sinderen, M.J.: Lightweight metrics for enterprise architecture analysis. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 228, pp. 113–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26762-3_11
Smajevic, M., Bork, D.: From conceptual models to knowledge graphs: a generic model transformation platform. In: MoDELS’21: ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS) - Tools & Demonstrations. ACM/IEEE (2021). (in press)
Smajevic, M., Bork, D.: Towards graph-based analysis of enterprise architecture models. In: Proceedings of the 40th International Conference on Conceptual Modeling (2021). (in Press)
Tieu, B., Hacks, S.: Determining enterprise architecture smells from software architecture smells. In: 23rd IEEE International Conference on Business Informatics Workshops (to be published). IEEE (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Smajevic, M., Hacks, S., Bork, D. (2021). Using Knowledge Graphs to Detect Enterprise Architecture Smells. In: Serral, E., Stirna, J., Ralyté, J., Grabis, J. (eds) The Practice of Enterprise Modeling. PoEM 2021. Lecture Notes in Business Information Processing, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-030-91279-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-91279-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91278-9
Online ISBN: 978-3-030-91279-6
eBook Packages: Computer ScienceComputer Science (R0)