[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Knowledge Graphs to Detect Enterprise Architecture Smells

  • Conference paper
  • First Online:
The Practice of Enterprise Modeling (PoEM 2021)

Abstract

Hitherto, the concept of Enterprise Architecture (EA) Smells has been proposed to assess quality flaws in EAs and their models. Together with this new concept, a catalog of different EA Smells has been published and a first prototype was developed. However, this prototype is limited to ArchiMate and is not able to assess models adhering to other EA modeling languages. Moreover, the prototype is not integrate-able with other EA tools. Therefore, we propose to enhance the extensible Graph-based Enterprise Architecture Analysis (eGEAA) platform that relies on Knowledge Graphs with EA Smell detection capabilities. To align these two approaches, we show in this paper, how ArchiMate models can be transformed into Knowledge Graphs and provide a set of queries on the Knowledge Graph representation that are able to detect EA Smells. This enables enterprise architects to assess EA Smells on all types of EA models as long as there is a Knowledge Graph representation of the model. Finally, we evaluate the Knowledge Graph based EA Smell detection by analyzing a set of 347 EA models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aier, S.: How clustering enterprise architectures helps to design service oriented architectures. In: 2006 IEEE International Conference on Services Computing (SCC 2006), pp. 269–272. IEEE (2006)

    Google Scholar 

  2. Barbosa, A., Santana, A., Hacks, S., Stein, N.V.: A taxonomy for enterprise architecture analysis research. In: 21st International Conference on Enterprise Information Systems, vol. 2, pp. 493–504. SciTePress (2019)

    Google Scholar 

  3. Bebensee, B., Hacks, S.: Applying dynamic bayesian networks for automated modeling in archimate: a realization study. In: 23rd IEEE International Enterprise Distributed Object Computing Workshop, EDOC Workshops 2019, Paris, France, 28–31 October 2019, pp. 17–24. IEEE (2019)

    Google Scholar 

  4. Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and enterprise ai: the promise of an enabling technology. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 26–37. IEEE (2019)

    Google Scholar 

  5. Bork, D., et al.: Requirements engineering for model-based enterprise architecture management with ArchiMate. In: Pergl, R., Babkin, E., Lock, R., Malyzhenkov, P., Merunka, V. (eds.) EOMAS 2018. LNBIP, vol. 332, pp. 16–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00787-4_2

    Chapter  Google Scholar 

  6. Bork, D., Smajevic, M.: Source code repository of the eGEAA platform (2021). https://github.com/borkdominik/eGEAA

  7. Buschle, M., Johnson, P., Shahzad, K.: The enterprise architecture analysis tool - support for the predictive, probabilistic architecture modeling framework, pp. 3350–3364 (2013)

    Google Scholar 

  8. Cunningham, W.: The wycash portfolio management system. SIGPLAN OOPS Mess. 4(2), 29–30 (1992)

    Article  Google Scholar 

  9. Fensel, D., et al.: Knowledge Graphs - Methodology, Tools and Selected Use Cases. Springer, Germany (2020). https://doi.org/10.1007/978-3-030-37439-6

    Book  Google Scholar 

  10. Florez, H., Sánchez, M., Villalobos, J.: A catalog of automated analysis methods for enterprise models. SpringerPlus 5(1), 1–24 (2016)

    Article  Google Scholar 

  11. Franke, U., Holschke, O., Buschle, M., Narman, P., Rake-Revelant, J.: It consolidation: an optimization approach. In: 2010 14th IEEE International Enterprise Distributed Object Computing Conference Workshops, pp. 21–26 (2010)

    Google Scholar 

  12. Gampfer, F., Jürgens, A., Müller, M., Buchkremer, R.: Past, current and future trends in enterprise architecture-a view beyond the horizon. Comput. Ind. 100, 70–84 (2018)

    Article  Google Scholar 

  13. Garg, A., Kazman, R., Chen, H.M.: Interface descriptions for enterprise architecture. Sci. Comput. Program. 61(1), 4–15 (2006)

    Article  MathSciNet  Google Scholar 

  14. Giakoumakis, V., Krob, D., Liberti, L., Roda, F.: Technological architecture evolutions of information systems: trade-off and optimization. Concurr. Eng. 20(2), 127–147 (2012). https://doi.org/10.1177/1063293X12447715

    Article  Google Scholar 

  15. Hacks, S., Hofert, H., Salentin, J., Yeong, Y.C., Lichter, H.: Towards the definition of enterprise architecture debts. In: IEEE 23rd International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 9–16. IEEE (2019). https://doi.org/10.1109/EDOCW.2019.00016

  16. Hacks, S., Lichter, H.: A probabilistic enterprise architecture model evolution. In: 22nd IEEE International Enterprise Distributed Object Computing Conference, EDOC 2018, Stockholm, Sweden, 16–19 October 2018, pp. 51–57. IEEE Computer Society (2018)

    Google Scholar 

  17. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., Van der Merwe, A., Woitsch, R.: A new paradigm for the continuous alignment of business and it: Combining enterprise architecture modelling and enterprise ontology. Comput. Ind. 79, 77–86 (2016)

    Article  Google Scholar 

  18. Holschke, O., Närman, P., Flores, W.R., Eriksson, E., Schönherr, M.: Using enterprise architecture models and bayesian belief networks for failure impact analysis. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 339–350. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01247-1_35

    Chapter  Google Scholar 

  19. Iacob, M.E., Jonkers, H.: Quantitative analysis of enterprise architectures. In: Konstantas, D., Bourrieres, J.P., Leonard, M., Boudjlida, N. (eds.) Interoperability of Enterprise Software and Applications, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10.1007/1-84628-152-0_22

    Chapter  Google Scholar 

  20. Johnson, P., Ekstedt, M., Lagerström, R.: Automatic probabilistic enterprise IT architecture modeling: a dynamic bayesian networks approach. In: Franke, U., Lapalme, J., Johnson, P. (eds.) 20th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 123–129 (2016)

    Google Scholar 

  21. Jugel, D.: An integrative method for decision-making in EA management. In: Zimmermann, A., Schmidt, R., Jain, L.C. (eds.) Architecting the Digital Transformation. ISRL, vol. 188, pp. 289–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49640-1_15

    Chapter  Google Scholar 

  22. Jugel, D., Kehrer, S., Schweda, C.M., Zimmermann, A.: Providing EA decision support for stakeholders by automated analyses. In: Digital Enterprise Computing 2015, pp. 151–162. GI (2015)

    Google Scholar 

  23. Lagerström, R., Baldwin, C., MacCormack, A., Dreyfus, D.: Visualizing and measuring enterprise architecture: an exploratory BioPharma case. In: Grabis, J., Kirikova, M., Zdravkovic, J., Stirna, J. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 9–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41641-5_2

    Chapter  Google Scholar 

  24. Lehmann, B.D., Alexander, P., Lichter, H., Hacks, S.: Towards the identification of process anti-patterns in enterprise architecture models. In: 8th International Workshop on Quantitative Approaches to Software Quality in conjunction with the 27th Asia-Pacific Software Engineering Conference (APSEC 2020), vol. 2767, pp. 47–54. CEUR-WS (2020)

    Google Scholar 

  25. López, J.A.H., Cuadrado, J.S.: MAR: a structure-based search engine for models. In: Syriani, E., Sahraoui, H.A., de Lara, J., Abrahão, S. (eds.) MoDELS ’20: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems, Virtual Event, Canada, 2020, pp. 57–67. ACM (2020)

    Google Scholar 

  26. Maccormack, A.D., Lagerstrom, R., Baldwin, C.Y.: A methodology for operationalizing enterprise architecture and evaluating enterprise it flexibility. Harvard Business School working paper series# 15–060 (2015)

    Google Scholar 

  27. Messina, A.: Overview of standard graph file formats. Technical Report, RT-ICAR-PA-2018-06 (2018). http://dx.doi.org/10.13140/RG.2.2.11144.88324

  28. OMG: ArchiMate® 3.1 Specification. The Open Group (2019). http://pubs.opengroup.org/architecture/archimate3-doc/

  29. Österlind, M., Lagerström, R., Rosell, P.: Assessing modifiability in application services using enterprise architecture models – a case study. In: Aier, S., Ekstedt, M., Matthes, F., Proper, E., Sanz, J.L. (eds.) PRET/TEAR -2012. LNBIP, vol. 131, pp. 162–181. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34163-2_10

    Chapter  Google Scholar 

  30. Pittl, B., Bork, D.: Modeling digital enterprise ecosystems with ArchiMate: a mobility provision case study. In: ICServ 2017. LNCS, vol. 10371, pp. 178–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61240-9_17

    Chapter  Google Scholar 

  31. Roelens, B., Steenacker, W., Poels, G.: Realizing strategic fit within the business architecture: the design of a process-goal alignment modeling and analysis technique. Softw. Syst. Model. 18(1), 631–662 (2019)

    Article  Google Scholar 

  32. Salentin, J., Hacks, S.: Enterprise architecture smells prototype (2020). https://git.rwth-aachen.de/ba-ea-smells/program

  33. Salentin, J., Hacks, S.: Towards a catalog of enterprise architecture smells. In: Gronau, N., Heine, M., Krasnova, H., Poustcchi, K. (eds.) Entwicklungen, Chancen und Herausforderungen der Digitalisierung: Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik, WI 2020, Potsdam, Germany, 9–11 March 2020, Community Tracks, pp. 276–290. GITO Verlag (2020)

    Google Scholar 

  34. Salentin, J., Lehmann, B., Hacks, S., Alexander, P.: Enterprise architecture smells catalog (2021). https://swc-public.pages.rwth-aachen.de/smells/ea-smells/

  35. Sales, T.P., Guizzardi, G.: Ontological anti-patterns: empirically uncovered error-prone structures in ontology-driven conceptual models. Data Knowl. Eng. 99, 72–104 (2015)

    Article  Google Scholar 

  36. Santana, A., Fischbach, K., Moura, H.: Enterprise architecture analysis and network thinking: A literature review. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 4566–4575. IEEE (2016)

    Google Scholar 

  37. Schoonjans, A.: Social network analysis techniques in enterprise architecture management. Ph.D. thesis, PhD thesis, Ghent University, Ghent (2016)

    Google Scholar 

  38. Singh, P.M., van Sinderen, M.J.: Lightweight metrics for enterprise architecture analysis. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 228, pp. 113–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26762-3_11

    Chapter  Google Scholar 

  39. Smajevic, M., Bork, D.: From conceptual models to knowledge graphs: a generic model transformation platform. In: MoDELS’21: ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS) - Tools & Demonstrations. ACM/IEEE (2021). (in press)

    Google Scholar 

  40. Smajevic, M., Bork, D.: Towards graph-based analysis of enterprise architecture models. In: Proceedings of the 40th International Conference on Conceptual Modeling (2021). (in Press)

    Google Scholar 

  41. Tieu, B., Hacks, S.: Determining enterprise architecture smells from software architecture smells. In: 23rd IEEE International Conference on Business Informatics Workshops (to be published). IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Bork .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smajevic, M., Hacks, S., Bork, D. (2021). Using Knowledge Graphs to Detect Enterprise Architecture Smells. In: Serral, E., Stirna, J., Ralyté, J., Grabis, J. (eds) The Practice of Enterprise Modeling. PoEM 2021. Lecture Notes in Business Information Processing, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-030-91279-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91279-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91278-9

  • Online ISBN: 978-3-030-91279-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics