[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Generation of Intelligent Chatbots from DMN Decision Models

  • Conference paper
  • First Online:
Rules and Reasoning (RuleML+RR 2021)

Abstract

Decision models are the consolidated knowledge representation of the requirements and the logic of operational decisions in business organizations. Decision models defined in the Decision Model and Notation (DMN) standard can contribute significantly to the automation of business decision management. However, the current scope of decision support is quite limited in presenting the decision-making process to an end-user in a reliable, user-friendly way. This paper provides a framework for automatically generating chatbots from DMN models that can handle numerous user scenarios for effective and explainable decision-making during customer support inquiries. The method can improve the digitalization of customer services and give customers more transparency and trust in the decision-making through user-friendly chatbots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.omg.org/spec/DMN/1.0.

  2. 2.

    https://www.luis.ai/.

  3. 3.

    https://www.ibm.com/cloud/watson-assistant.

  4. 4.

    www.luis.ai/home.

  5. 5.

    https://camunda.com/products/camunda-platform/dmn-engine/.

  6. 6.

    https://www.signavio.com/.

References

  1. Aerts, B., Vandevelde, S., Vennekens, J.: Tackling the DMN challenges with cDMN: a tight integration of DMN and constraint reasoning. In: Gutiérrez-Basulto, V., Kliegr, T., Soylu, A., Giese, M., Roman, D. (eds.) RuleML+RR 2020. LNCS, vol. 12173, pp. 23–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57977-7_2

    Chapter  Google Scholar 

  2. Al-Zubaide, H., Issa, A.A.: OntBot: ontology based ChatBot. In: 2011 4th International Symposium on Innovation in Information and Communication Technology, ISIICT 2011, pp. 7–12 (2011). https://doi.org/10.1109/ISIICT.2011.6149594

  3. Androutsopoulou, A., Karacapilidis, N., Loukis, E., Charalabidis, Y.: Transforming the communication between citizens and government through AI-guided chatbots. Gov. Inf. Q. 36(2), 358–367 (2019)

    Article  Google Scholar 

  4. Dale, R.: The return of the chatbots. Nat. Lang. Eng. 22(5), 811–817 (2016). https://doi.org/10.1017/S1351324916000243

    Article  Google Scholar 

  5. Dasseville, I., Janssens, L., Janssens, G., Vanthienen, J., Denecker, M.: Combining DMN and the knowledge base paradigm for flexible decision enactment. In: Supplementary Proceedings of the RuleML 2016 Challenge, vol. 1620 (2016)

    Google Scholar 

  6. Etikala, V., Van Veldhoven, Z., Vanthienen, J.: Text2Dec: extracting decision dependencies from natural language text for automated DMN decision modelling. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 367–379. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_27

    Chapter  Google Scholar 

  7. Figl, K., Mendling, J., Tokdemir, G., Vanthienen, J.: What we know and what we do not know about DMN. Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model. 13(2), 1–16 (2018)

    Google Scholar 

  8. Hussain, S., Ameri Sianaki, O., Ababneh, N.: A survey on conversational agents/chatbots classification and design techniques. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 946–956. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15035-8_93

    Chapter  Google Scholar 

  9. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141–154 (2011)

    Article  Google Scholar 

  10. Janssen, A., Rodríguez Cardona, D., Breitner, M.H., et al.: More than FAQ! Chatbot taxonomy for business-to-business customer services. In: Følstad, A. (ed.) CONVERSATIONS 2020. LNCS, vol. 12604, pp. 175–189. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68288-0_12

    Chapter  Google Scholar 

  11. Jia, J.: The study of the application of a keywords-based chatbot system on the teaching of foreign languages, pp. 1–11 (2003)

    Google Scholar 

  12. Kang, Y., Cai, Z., Tan, C.W., Huang, Q., Liu, H.: Natural language processing (NLP) in management research: a literature review. J. Manag. Anal. 7(2), 139–172 (2020)

    Google Scholar 

  13. von Leipzig, T., et al.: Initialising customer-orientated digital transformation in enterprises. Proc. Manuf. 8, 517–524 (2017). https://doi.org/10.1016/j.promfg.2017.02.066

    Article  Google Scholar 

  14. López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to chatbots. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 383–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_24

    Chapter  Google Scholar 

  15. Van Veldhoven, Z., Vanthienen, J.: Digital transformation as an interaction-driven perspective between business, society, and technology. Electron. Mark. 16 (2021). https://doi.org/10.1007/s12525-021-00464-5

  16. Vanthienen, J.: On smart data, decisions and processes. In: 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), vol. 1, p. 5. IEEE (2015)

    Google Scholar 

  17. Vanthienen, J.: Decisions, advice and explanation: an overview and research agenda. In: A Research Agenda for Knowledge Management and Analytics (2021)

    Google Scholar 

  18. Vanthienen, J., Mues, C., Aerts, A.: An illustration of verification and validation in the modelling phase of KBS development. Data Knowl. Eng. 27(3), 337–352 (1998)

    Article  Google Scholar 

  19. Zierau, N., Elshan, E., Visini, C., Janson, A.: A review of the empirical literature on conversational agents and future research directions. In: International Conference on Information Systems (ICIS) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedavyas Etikala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Etikala, V., Goossens, A., Van Veldhoven, Z., Vanthienen, J. (2021). Automatic Generation of Intelligent Chatbots from DMN Decision Models. In: Moschoyiannis, S., Peñaloza, R., Vanthienen, J., Soylu, A., Roman, D. (eds) Rules and Reasoning. RuleML+RR 2021. Lecture Notes in Computer Science(), vol 12851. Springer, Cham. https://doi.org/10.1007/978-3-030-91167-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91167-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91166-9

  • Online ISBN: 978-3-030-91167-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics