[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Formal Verification of Intelligent Hybrid Systems that are Modeled with Simulink and the Reinforcement Learning Toolbox

  • Conference paper
  • First Online:
Formal Methods (FM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13047))

Included in the following conference series:

Abstract

Reinforcement Learning (RL) is a powerful technique to control autonomous hybrid systems (HSs) in dynamic and uncertain environments but makes it hard to guarantee their correct behavior in safety-critical applications. To formally guarantee safe behavior, a formal system description is required, which is often not available in industrial design processes and hard to obtain for the unpredictable, trial and error learning processes of RL. In this paper, we present an approach for semi-automatic deductive verification of intelligent HSs with embedded RL components modeled in Simulink together with the RL Toolbox. Our key ideas are threefold: First, we capture the safety-relevant behavior of RL components with hybrid contracts in differential dynamic logic. Second, we verify safety properties of the overall system with the RL component replaced by its contract deductively using the interactive theorem prover KeYmaera X. To make this possible, we precisely capture the semantics of industrially designed intelligent HSs by extending an existing transformation from Simulink to differential dynamic logic to support RL components. Third, we ensure that contracts are complied with at runtime by automatically deriving runtime monitors from our hybrid contracts. We demonstrate the practical applicability, scalability, and flexibility of our approach by verifying collision freedom of an autonomous intelligent robot in a factory setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html.

  2. 2.

    https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html.

References

  1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  2. Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems properties with theorem proving. In: 2014 UKACC International Conference on Control, CONTROL 2014 - Proceedings, pp. 244–249. IEEE (2014)

    Google Scholar 

  3. Ashok, P., Křetínský, J., Larsen, K.G., Le Coënt, A., Taankvist, J.H., Weininger, M.: SOS: safe, optimal and small strategies for hybrid markov decision processes. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 147–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_9

    Chapter  Google Scholar 

  4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

    Chapter  Google Scholar 

  5. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Autom. Control 48(1), 64–75 (2003)

    Google Scholar 

  6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  7. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

    Chapter  Google Scholar 

  8. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

  9. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe control through proof and learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  10. Hartsell, C., et al.: Model-based design for CPS with learning-enabled components. In: Proceedings of the Workshop on Design Automation for CPS and IoT, pp. 1–9. DESTION ’19, Association for Computing Machinery, New York, NY, USA (2019)

    Google Scholar 

  11. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-time MATLAB/Simulink models using SMT solving. In: International Conference on Embedded Software (EMSOFT), pp. 1–10. IEEE (2013)

    Google Scholar 

  12. Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_40

    Chapter  Google Scholar 

  13. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control systems modeled in simulink with keymaera X. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5_6

  14. Liebrenz, T., Herber, P., Glesner, S.: A service-oriented approach for decomposing and verifying hybrid system models. In: Arbab, F., Jongmans, S.-S. (eds.) FACS 2019. LNCS, vol. 12018, pp. 127–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40914-2_7

  15. Minopoli, S., Frehse, G.: SL2SX translator: from simulink to spaceex models. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, pp. 93–98. HSCC ’16, Association for Computing Machinery, New York, NY, USA (2016)

    Google Scholar 

  16. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obstacle avoidance and navigation of ground robots. Int. J. Robot. Res. 36(12), 1312–1340 (2017)

    Google Scholar 

  17. Mitsch, S., Platzer, A.: The KeYmaera X Proof IDE - concepts on usability in hybrid systems theorem proving. Electronic Proceedings in Theoretical Computer Science, vol. 240 (2017)

    Google Scholar 

  18. Phan, D., et al.: A component-based simplex architecture for high-assurance cyber-physical systems. In: 2017 17th International Conference on Application of Concurrency to System Design (ACSD), pp. 49–58. IEEE (2017)

    Google Scholar 

  19. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008)

    Google Scholar 

  20. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_14

    Chapter  Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press Cambridge, Massachusetts London, England (2018)

    Google Scholar 

  22. The MathWorks: White Paper: Code Verification and Run-Time Error Detection Through Abstract Interpretation (2008)

    Google Scholar 

  23. The MathWorks: MATLAB Simulink (2021). www.mathworks.com/products/simulink.html

  24. The MathWorks: Reinforcement Learning Toolbox (2021). https://www.mathworks.com/products/reinforcement-learning.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julius Adelt , Timm Liebrenz or Paula Herber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adelt, J., Liebrenz, T., Herber, P. (2021). Formal Verification of Intelligent Hybrid Systems that are Modeled with Simulink and the Reinforcement Learning Toolbox. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90870-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90869-0

  • Online ISBN: 978-3-030-90870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics