Abstract
Vector commitment and its variants have attracted a lot of attention recently as they have been exposed to a wide range of applications in blockchain. Two special extensions of vector commitments, namely subvector commitments and mercurial commitments, have been proposed with attractive features that are desirable in many applications. Nevertheless, to the best of our knowledge, a single construction satisfying all those attractive features is still missing. In this work, we analyze those important properties and propose a new primitive called mercurial subvector commitments, which are efficiently updatable, mercurial hiding, position binding, and aggregatable. We formalize the system model and security model for such a primitive and present a concrete construction with security proofs to show that it satisfies all of the properties. Moreover, we also illustrate some applications of mercurial subvector commitments, including zero-knowledge sets and blockchain with account-based models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This setting is only used in the security proof rather than the proposed scheme.
- 2.
This is the message group without the i-th message.
References
Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28
Marcella, A.: Blockchain technology and decentralized governance: Is the state still necessary? Available at SSRN 2709713 (2015)
Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26
Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20
Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16
Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 64–77. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_5
Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27
Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally aggregatable vector commitments and applications to verifiable decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1
Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal assumptions and efficient constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 120–144. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_7
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with applications to zero-knowledge sets. J. Cryptol. 26(2), 251–279 (2013)
Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases with efficient updates. IEEE Trans. Dependable Secur. Comput. 12(5), 546–556 (2014)
Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with stateless transaction validation. IACR Cryptol. ePrint Arch. 2018, 968 (2018)
Dannen, C.: Introducing Ethereum and Solidity, vol. 1. Springer, Heidelberg (2017)
Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.: Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 45–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_3
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for multiple vector commitments. IACR Cryptol. ePrint Arch. 2020, 419 (2020)
Guan, Z., Wan, Z., Yang, Y., Zhou, Y., Huang, B.: Blockmaze: an efficient privacy-preserving account-model blockchain based on zk-snarks. IEEE Trans. Dependable Secur. Comput. (2020). https://doi.org/10.1109/TDSC.2020.3025129. https://ieeexplore.ieee.org/abstract/document/9200775
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_19
Libert, B., Ramanna, S., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) (2016)
Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_30
Ma, S., Deng, Y., He, D., Zhang, J., Xie, X.: An efficient nizk scheme for privacy-preserving transactions over account-model blockchain. IEEE Trans. Dependable Secur. Comput. 18(2), 641–651 (2020)
Metere, R., Dong, C.: Automated cryptographic analysis of the pedersen commitment scheme. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczypiorski, K. (eds.) MMM-ACNS 2017. LNCS, vol. 10446, pp. 275–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65127-9_22
Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pp. 80–91. IEEE (2003)
Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411. IEEE (2013)
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot (2019)
Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)
Acknowledgement
Y. Li is partially supported by the UOW RevITAlise grant (RITA). This works is also supported in part by the National Natural Science Foundation of China (61872229, U19B2021), the Blockchain Core Technology Strategic Research Program of the Ministry of Education of China (2020KJ010301), Key Research and Development Program of Shaanxi (2020ZDLGY09-06, 2021ZDLGY06-04).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Y., Susilo, W., Yang, G., Phuong, T.V.X., Yu, Y., Liu, D. (2021). Concise Mercurial Subvector Commitments: Definitions and Constructions. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021. Lecture Notes in Computer Science(), vol 13083. Springer, Cham. https://doi.org/10.1007/978-3-030-90567-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-90567-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90566-8
Online ISBN: 978-3-030-90567-5
eBook Packages: Computer ScienceComputer Science (R0)