[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Concise Mercurial Subvector Commitments: Definitions and Constructions

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2021)

Abstract

Vector commitment and its variants have attracted a lot of attention recently as they have been exposed to a wide range of applications in blockchain. Two special extensions of vector commitments, namely subvector commitments and mercurial commitments, have been proposed with attractive features that are desirable in many applications. Nevertheless, to the best of our knowledge, a single construction satisfying all those attractive features is still missing. In this work, we analyze those important properties and propose a new primitive called mercurial subvector commitments, which are efficiently updatable, mercurial hiding, position binding, and aggregatable. We formalize the system model and security model for such a primitive and present a concrete construction with security proofs to show that it satisfies all of the properties. Moreover, we also illustrate some applications of mercurial subvector commitments, including zero-knowledge sets and blockchain with account-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This setting is only used in the security proof rather than the proposed scheme.

  2. 2.

    This is the message group without the i-th message.

References

  1. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28

    Chapter  Google Scholar 

  2. Marcella, A.: Blockchain technology and decentralized governance: Is the state still necessary? Available at SSRN 2709713 (2015)

    Google Scholar 

  3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

    Chapter  Google Scholar 

  4. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20

    Chapter  Google Scholar 

  5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16

    Chapter  Google Scholar 

  6. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 64–77. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_5

  7. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27

    Chapter  Google Scholar 

  8. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally aggregatable vector commitments and applications to verifiable decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1

    Chapter  Google Scholar 

  9. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal assumptions and efficient constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 120–144. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_7

    Chapter  Google Scholar 

  10. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  11. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with applications to zero-knowledge sets. J. Cryptol. 26(2), 251–279 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases with efficient updates. IEEE Trans. Dependable Secur. Comput. 12(5), 546–556 (2014)

    Article  Google Scholar 

  13. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with stateless transaction validation. IACR Cryptol. ePrint Arch. 2018, 968 (2018)

    Google Scholar 

  14. Dannen, C.: Introducing Ethereum and Solidity, vol. 1. Springer, Heidelberg (2017)

    Book  Google Scholar 

  15. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.: Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 45–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_3

    Chapter  Google Scholar 

  16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  17. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for multiple vector commitments. IACR Cryptol. ePrint Arch. 2020, 419 (2020)

    Google Scholar 

  18. Guan, Z., Wan, Z., Yang, Y., Zhou, Y., Huang, B.: Blockmaze: an efficient privacy-preserving account-model blockchain based on zk-snarks. IEEE Trans. Dependable Secur. Comput. (2020). https://doi.org/10.1109/TDSC.2020.3025129. https://ieeexplore.ieee.org/abstract/document/9200775

  19. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  20. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_19

    Chapter  Google Scholar 

  21. Libert, B., Ramanna, S., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) (2016)

    Google Scholar 

  22. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_30

    Chapter  Google Scholar 

  23. Ma, S., Deng, Y., He, D., Zhang, J., Xie, X.: An efficient nizk scheme for privacy-preserving transactions over account-model blockchain. IEEE Trans. Dependable Secur. Comput. 18(2), 641–651 (2020)

    Google Scholar 

  24. Metere, R., Dong, C.: Automated cryptographic analysis of the pedersen commitment scheme. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczypiorski, K. (eds.) MMM-ACNS 2017. LNCS, vol. 10446, pp. 275–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65127-9_22

    Chapter  Google Scholar 

  25. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pp. 80–91. IEEE (2003)

    Google Scholar 

  26. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411. IEEE (2013)

    Google Scholar 

  27. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot (2019)

    Google Scholar 

  28. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  29. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

    Google Scholar 

Download references

Acknowledgement

Y. Li is partially supported by the UOW RevITAlise grant (RITA). This works is also supported in part by the National Natural Science Foundation of China (61872229, U19B2021), the Blockchain Core Technology Strategic Research Program of the Ministry of Education of China (2020KJ010301), Key Research and Development Program of Shaanxi (2020ZDLGY09-06, 2021ZDLGY06-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Susilo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Susilo, W., Yang, G., Phuong, T.V.X., Yu, Y., Liu, D. (2021). Concise Mercurial Subvector Commitments: Definitions and Constructions. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021. Lecture Notes in Computer Science(), vol 13083. Springer, Cham. https://doi.org/10.1007/978-3-030-90567-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90567-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90566-8

  • Online ISBN: 978-3-030-90567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics