[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Explanation-Guided Diagnosis of Machine Learning Evasion Attacks

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2021)

Abstract

Machine Learning (ML) models are susceptible to evasion attacks. Evasion accuracy is typically assessed using aggregate evasion rate, and it is an open question whether aggregate evasion rate enables feature-level diagnosis on the effect of adversarial perturbations on evasive predictions. In this paper, we introduce a novel framework that harnesses explainable ML methods to guide high-fidelity assessment of ML evasion attacks. Our framework enables explanation-guided correlation analysis between pre-evasion perturbations and post-evasion explanations. Towards systematic assessment of ML evasion attacks, we propose and evaluate a novel suite of model-agnostic metrics for sample-level and dataset-level correlation analysis. Using malware and image classifiers, we conduct comprehensive evaluations across diverse model architectures and complementary feature representations. Our explanation-guided correlation analysis reveals correlation gaps between adversarial samples and the corresponding perturbations performed on them. Using a case study on explanation-guided evasion, we show the broader usage of our methodology for assessing robustness of ML models .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CNET freeware site (2020). https://download.cnet.com/s/software/windows/?licenseType=Free

  2. Cuckoo sandbox (2020). https://cuckoosandbox.org

  3. LIEF project (2020). https://github.com/lief-project/LIEF

  4. Virus share (2020). https://virusshare.com

  5. Virus total (2020). https://www.virustotal.com/gui/home/upload

  6. Ali, A., Eshete, B.: Best-effort adversarial approximation of black-box malware classifiers. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N. (eds.) SecureComm 2020. LNICST, vol. 335, pp. 318–338. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63086-7_18

    Chapter  Google Scholar 

  7. Anderson, H.S., Roth, P.: EMBER: an open dataset for training static PE malware machine learning models. ArXiv e-prints (2018)

    Google Scholar 

  8. Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning to evade static PE machine learning malware models via reinforcement learning. CoRR arXiv:1801.08917 (2018)

  9. Apruzzese, G., Andreolini, M., Marchetti, M., Venturi, A., Colajanni, M.: Deep reinforcement adversarial learning against botnet evasion attacks. IEEE Trans. Netw. Serv. Manage. 17, 1975–1987 (2020)

    Article  Google Scholar 

  10. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recogn. 84, 317–331 (2018)

    Article  Google Scholar 

  11. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: IEEE SP, pp. 39–57 (2017)

    Google Scholar 

  12. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  13. Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A.: Explaining vulnerabilities of deep learning to adversarial malware binaries. In: Proceedings of the Third Italian Conference on Cyber Security (2019)

    Google Scholar 

  14. Demontis, A., et al.: Yes, machine learning can be more secure! A case study on android malware detection. IEEE TDSC 16(4), 711–724 (2019)

    MathSciNet  Google Scholar 

  15. Fan, M., Wei, W., Xie, X., Liu, Y., Guan, X., Liu, T.: Can we trust your explanations? Sanity checks for interpreters in android malware analysis. IEEE Trans. Inf. Forensics Secur. 16, 838–853 (2021)

    Article  Google Scholar 

  16. Fidel, G., Bitton, R., Shabtai, A.: When explainability meets adversarial learning: Detecting adversarial examples using SHAP signatures. In: IEEE IJCNN, pp. 1–8 (2020)

    Google Scholar 

  17. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: IEEE ICCV, pp. 3449–3457 (2017)

    Google Scholar 

  18. Gao, F., et al.: DeepCC: a novel deep learning-based framework for cancer molecular subtype classification. Oncogenesis 8(9), 1–12 (2019)

    Article  Google Scholar 

  19. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: AAAI, vol. 33 (2017)

    Google Scholar 

  20. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  21. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial examples for malware detection. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 62–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_4

    Chapter  Google Scholar 

  22. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. CoRR arXiv:1805.10820 (2018)

  23. Guo, W., Mu, D., Xu, J., Su, P., Wang, G., Xing, X.: LEMNA: explaining deep learning based security applications. In: ACM SIGSAC CCS, pp. 364–379 (2018)

    Google Scholar 

  24. Han, D., et al.: Practical traffic-space adversarial attacks on learning-based nidss. CoRR arXiv:2005.07519 (2020)

  25. Heo, J., Joo, S., Moon, T.: Fooling neural network interpretations via adversarial model manipulation (2019)

    Google Scholar 

  26. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks based on GAN. CoRR arXiv:1702.05983 (2017)

  27. Kolosnjaji, B., et al.: Adversarial malware binaries: evading deep learning for malware detection in executables. In: EUSIPCO, pp. 533–537 (2018)

    Google Scholar 

  28. Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B., Keshet, J.: Deceiving end-to-end deep learning malware detectors using adversarial examples (2018)

    Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  30. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. CoRR arXiv:1611.01236 (2016)

  31. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits (2020). http://yann.lecun.com/exdb/mnist/

  32. Li, J., Monroe, W., Jurafsky, D.: Understanding neural networks through representation erasure. CoRR arXiv:1612.08220 (2016)

  33. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NeurIPS, pp. 4765–4774 (2017)

    Google Scholar 

  34. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. CoRR arXiv:1706.06083 (2017)

  35. Papernot, N., McDaniel, P.D., Goodfellow, I.J.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. CoRR arXiv:1605.07277 (2016)

  36. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against deep learning systems using adversarial examples. CoRR arXiv:1602.02697 (2016)

  37. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of adversarial ML attacks in the problem space. In: IEEE SP (2020)

    Google Scholar 

  38. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.K.: Malware detection by eating a whole EXE. In: AAAI Workshops, pp. 268–276 (2018)

    Google Scholar 

  39. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: ACM SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  40. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI, pp. 1527–1535 (2018)

    Google Scholar 

  41. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end attack against state of the art API call based malware classifiers. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 490–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_23

    Chapter  Google Scholar 

  42. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.K.: Deep reinforcement learning framework for autonomous driving. CoRR arXiv:1704.02532 (2017)

  43. Shapley, L.: A value for n-person games (1953)

    Google Scholar 

  44. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: ICML, pp. 3145–3153 (2017)

    Google Scholar 

  45. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR Workshop Track Proceedings (2014)

    Google Scholar 

  46. Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: SmoothGrad: removing noise by adding noise. CoRR arXiv:1706.03825 (2017)

  47. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for simplicity: the all convolutional net. In: ICLR Workshop Track Proceedings (2015)

    Google Scholar 

  48. Srndic, N., Laskov, P.: Practical evasion of a learning-based classifier: a case study. In: IEEE SP, pp. 197–211 (2014)

    Google Scholar 

  49. Suciu, O., Coull, S.E., Johns, J.: Exploring adversarial examples in malware detection. In: IEEE SP Workshops, pp. 8–14 (2019)

    Google Scholar 

  50. Warnecke, A., Arp, D., Wressnegger, C., Rieck, K.: Evaluating explanation methods for deep learning in security. In: IEEE EuroSP, pp. 158–174 (2020)

    Google Scholar 

  51. Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers: a case study on PDF malware classifiers. In: NDSS (2016)

    Google Scholar 

  52. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial settings: exploiting feature evolutions and confusions in android apps. In: ACSAC, pp. 288–302 (2017)

    Google Scholar 

  53. Zhang, X., Wang, N., Shen, H., Ji, S., Luo, X., Wang, T.: Interpretable deep learning under fire. In: USENIX Security, pp. 1659–1676 (2020)

    Google Scholar 

Download references

Acknowledgements

We thank our shepherd Giovanni Apruzzese and the anonymous reviewers for their insightful feedback that immensely improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmen Amich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amich, A., Eshete, B. (2021). Explanation-Guided Diagnosis of Machine Learning Evasion Attacks. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M. (eds) Security and Privacy in Communication Networks. SecureComm 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-030-90019-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90019-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90018-2

  • Online ISBN: 978-3-030-90019-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics