[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

HYPE: CNN Based HYbrid PrEcoding Framework for 5G and Beyond

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 450))

  • 1023 Accesses

Abstract

5G and beyond (B5G) technologies have emerged with the increasing demand for higher data-rate wireless communication with low latency. The B5G network utilizes hybrid beam-forming (HBF) as a promising solution to provide large bandwidths with directional communication. Conventional HBF techniques are computationally complex and unable to fully exploit the spatial & partial channel state information, which results in very low spectral efficiency. Hence, this paper proposes an optimized framework, HYPE, integrating the convolutional neural network resulting in the reduced complexity for the HBF technique. A two-phase analog shifter is used to maximize the spectral efficiency of the system by resolving the constant modulus constraint. Experimental results justify the enhanced performance of the proposed framework than conventional algorithms. Extensive ablation studies on the proposed work were carried out to analyze efficiency more in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 175.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verma, M., Vipparthi, S.K., Singh, G.: Non-linearities improve OrigiNet based on active imaging for micro expression recognition. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (July 2020)

    Google Scholar 

  2. Lin, T., Cong, J., Zhu, Y., Zhang, J., Letaief, K.B.: Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Trans. Commun. 67(5), 3693–3708 (2019)

    Article  Google Scholar 

  3. Lin, T., Zhu, Y.: Beamforming design for large-scale antenna arrays using deep learning. IEEE Wirel. Commun. Lett. 9(1), 103–107 (2019)

    Article  Google Scholar 

  4. Huang, H., Song, Y., Yang, J., Gui, G., Adachi, F.: Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans. Veh. Technol. 68(3), 3027–3032 (2019)

    Article  Google Scholar 

  5. Long, Y., Chen, Z., Fang, J., Tellambura, C.: Data-driven-based analog beam selection for hybrid beamforming under mm-wave channels. IEEE J. Sel. Top. Sig. Process. 12(2), 340–352 (2018)

    Article  Google Scholar 

  6. Alkhateeb, A., Leus, G., Heath, R.W.: Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans. Wirel. Commun. 14(11), 6481–6494 (2015)

    Article  Google Scholar 

  7. Sohrabi, F., Yu, W.: Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Top. Sig. Process. 10(3), 501–513 (2016)

    Article  Google Scholar 

  8. Yu, X., Shen, J.C., Zhang, J., Letaief, K.B.: Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Top. Sig. Process. 10(3), 485–500 (2016)

    Article  Google Scholar 

  9. Alkhateeb, A., El Ayach, O., Leus, G., Heath, R.W.: Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Top. Sig. Process. 8(5), 831–846 (2014)

    Article  Google Scholar 

  10. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., Heath, R.W.: Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13(3), 1499–1513 (2014)

    Article  Google Scholar 

  11. Ghosh, A., et al.: Millimeter-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Top. Sig. Process. 32(6), 1152–1163 (2014)

    Google Scholar 

  12. Elbir, A.M.: CNN-based precoder and combiner design in mmWave MIMO systems. IEEE Commun. Lett. 23(7), 1240–1243 (2019)

    Article  Google Scholar 

  13. Ma, W., Qi, C., Zhang, Z., Cheng, J.: Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO. IEEE Trans. Commun. 68(5), 2838–2849 (2020)

    Article  Google Scholar 

  14. Lu, Q., Lin, T., Zhu, Y.: Channel estimation and hybrid precoding for millimeter wave communications: a deep learning-based approach. IEEE Access 9, 120924–120939 (2021)

    Article  Google Scholar 

  15. Faragallah, O.S., El-Sayed, H.S., Mohamed, G.: Performance enhancement of MmWave MIMO systems using deep learning framework. IEEE Access 9, 92460–92472 (2021)

    Article  Google Scholar 

  16. Unnisa, N., Tatineni, M.: Adaptive deep learning strategy with red deer algorithm for sparse channel estimation and hybrid precoding in millimeter wave massive MIMO-OFDM systems. Wirel. Pers. Commun. 122, 3019–3051 (2022)

    Article  Google Scholar 

  17. Li, Z., Gao, W., Zhang, M., Xiong, J.: Multi-task deep learning based hybrid precoding for mmWave massive MIMO system. China Commun. 18(10), 96–106 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, D., Biradar, K.M., Vipparthi, S.K., Battula, R.B. (2022). HYPE: CNN Based HYbrid PrEcoding Framework for 5G and Beyond. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_5

Download citation

Publish with us

Policies and ethics