[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning from the Crowd: Improving the Decision Making Process in Robot Soccer Using the Audience Noise

  • Conference paper
  • First Online:
RoboCup 2021: Robot World Cup XXIV (RoboCup 2021)

Abstract

Fan input and support is an important component in many individual and team sports, ranging from athletics to basketball. Audience interaction provides a consistent impact on the athletes’ performance. The analysis of the crowd noise can provide a global indication on the ongoing game situation, less conditioned by subjective factors that can influence a single fan. In this work, we exploit the collective intelligence of the audience of a robot soccer match to improve the performance of the robot players. In particular, audio features extracted from the crowd noiseare used in a Reinforcement Learning process to possibly modify the game strategy. The effectiveness of the proposed approach is demonstrated by experiments on registered crowd noise samples from several past RoboCup SPL matches.

E. Antonioni and V. Suriani—These two authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://librosa.org/.

References

  1. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning approach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_33

    Chapter  Google Scholar 

  2. Baum, E., Harper, M., Alicea, R., Ordonez, C.: Sound identification for fire-fighting mobile robots. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), pp. 79–86. IEEE (2018)

    Google Scholar 

  3. Boudreaux, C.J., Sanders, S.D., Walia, B.: A natural experiment to determine the crowd effect upon home court advantage. J. Sports Econ. 18(7), 737–749 (2017). https://doi.org/10.1177/1527002515595842

    Article  Google Scholar 

  4. Deleforge, A., Horaud, R.: The cocktail party robot: sound source separation and localisation with an active binaural head. In: 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 431–438. IEEE (2012)

    Google Scholar 

  5. Di Giambattista, V., Fawakherji, M., Suriani, V., Bloisi, D.D., Nardi, D.: On field gesture-based robot-to-robot communication with NAO soccer players. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 367–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_28

    Chapter  Google Scholar 

  6. Epting, L.K., Riggs, K.N., Knowles, J.D., Hanky, J.J.: Cheers vs. jeers: effects of audience feedback on individual athletic performance. North Am. J. Psychol. 13(2) (2011)

    Google Scholar 

  7. Gilliland, N.: How wimbledon is using AI to enhance the fan experience (2018). https://econsultancy.com/how-wimbledon-is-using-ai-to-enhance-the-fan-experience/. Accessed 25 Mar 2021

  8. Haykin, S., Chen, Z.: The cocktail party problem. Neural Comput. 17(9), 1875–1902 (2005)

    Article  Google Scholar 

  9. Okuno, H.G., Nakadai, K., Hidai, K.I., Mizoguchi, H., Kitano, H.: Human-robot interaction through real-time auditory and visual multiple-talker tracking. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 3, pp. 1402–1409. IEEE (2001)

    Google Scholar 

  10. RoboCup SPL Technical Committee: RoboCup Standard Platform League (NAO) Rule Book (2019). https://spl.robocup.org/wp-content/uploads/downloads/Rules2019.pdf. Accessed 26 Mar 2021

  11. Sahidullah, M., Saha, G.: Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition. Speech Commun. 54(4), 543–565 (2012). https://doi.org/10.1016/j.specom.2011.11.004, https://www.sciencedirect.com/science/article/pii/S0167639311001622

  12. Stolle, M., Precup, D.: Learning options in reinforcement learning. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 212–223. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45622-8_16

    Chapter  Google Scholar 

  13. Strauss, B., MacMahon, C.: Audience influences on athlete performances. In: Routledge Companion to Sport and Exercise Psychology. Global Perspectives and Fundamental Concepts, pp. 213–216. Routledge (2014)

    Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  15. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  16. Van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning. Adaptation, Learning, and Optimization, vol. 12, pp. 3–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_1

    Chapter  Google Scholar 

  17. Whiting, K.: This app lets sports fans cheer out loud in the stadium when watching remotely (2020). https://www.weforum.org/agenda/2020/06/sport-app-cheer-technology-japan-soccer-watch-remote-cheerer/. Accessed 25 Mar 2021

  18. Wu, X., Gong, H., Chen, P., Zhong, Z., Xu, Y.: Surveillance robot utilizing video and audio information. J. Intell. Rob. Syst. 55(4), 403–421 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Antonioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonioni, E., Suriani, V., Solimando, F., Nardi, D., Bloisi, D.D. (2022). Learning from the Crowd: Improving the Decision Making Process in Robot Soccer Using the Audience Noise. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds) RoboCup 2021: Robot World Cup XXIV. RoboCup 2021. Lecture Notes in Computer Science(), vol 13132. Springer, Cham. https://doi.org/10.1007/978-3-030-98682-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98682-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98681-0

  • Online ISBN: 978-3-030-98682-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics