Abstract
Fan input and support is an important component in many individual and team sports, ranging from athletics to basketball. Audience interaction provides a consistent impact on the athletes’ performance. The analysis of the crowd noise can provide a global indication on the ongoing game situation, less conditioned by subjective factors that can influence a single fan. In this work, we exploit the collective intelligence of the audience of a robot soccer match to improve the performance of the robot players. In particular, audio features extracted from the crowd noiseare used in a Reinforcement Learning process to possibly modify the game strategy. The effectiveness of the proposed approach is demonstrated by experiments on registered crowd noise samples from several past RoboCup SPL matches.
E. Antonioni and V. Suriani—These two authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning approach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_33
Baum, E., Harper, M., Alicea, R., Ordonez, C.: Sound identification for fire-fighting mobile robots. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), pp. 79–86. IEEE (2018)
Boudreaux, C.J., Sanders, S.D., Walia, B.: A natural experiment to determine the crowd effect upon home court advantage. J. Sports Econ. 18(7), 737–749 (2017). https://doi.org/10.1177/1527002515595842
Deleforge, A., Horaud, R.: The cocktail party robot: sound source separation and localisation with an active binaural head. In: 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 431–438. IEEE (2012)
Di Giambattista, V., Fawakherji, M., Suriani, V., Bloisi, D.D., Nardi, D.: On field gesture-based robot-to-robot communication with NAO soccer players. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 367–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_28
Epting, L.K., Riggs, K.N., Knowles, J.D., Hanky, J.J.: Cheers vs. jeers: effects of audience feedback on individual athletic performance. North Am. J. Psychol. 13(2) (2011)
Gilliland, N.: How wimbledon is using AI to enhance the fan experience (2018). https://econsultancy.com/how-wimbledon-is-using-ai-to-enhance-the-fan-experience/. Accessed 25 Mar 2021
Haykin, S., Chen, Z.: The cocktail party problem. Neural Comput. 17(9), 1875–1902 (2005)
Okuno, H.G., Nakadai, K., Hidai, K.I., Mizoguchi, H., Kitano, H.: Human-robot interaction through real-time auditory and visual multiple-talker tracking. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 3, pp. 1402–1409. IEEE (2001)
RoboCup SPL Technical Committee: RoboCup Standard Platform League (NAO) Rule Book (2019). https://spl.robocup.org/wp-content/uploads/downloads/Rules2019.pdf. Accessed 26 Mar 2021
Sahidullah, M., Saha, G.: Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition. Speech Commun. 54(4), 543–565 (2012). https://doi.org/10.1016/j.specom.2011.11.004, https://www.sciencedirect.com/science/article/pii/S0167639311001622
Stolle, M., Precup, D.: Learning options in reinforcement learning. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 212–223. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45622-8_16
Strauss, B., MacMahon, C.: Audience influences on athlete performances. In: Routledge Companion to Sport and Exercise Psychology. Global Perspectives and Fundamental Concepts, pp. 213–216. Routledge (2014)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)
Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)
Van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning. Adaptation, Learning, and Optimization, vol. 12, pp. 3–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_1
Whiting, K.: This app lets sports fans cheer out loud in the stadium when watching remotely (2020). https://www.weforum.org/agenda/2020/06/sport-app-cheer-technology-japan-soccer-watch-remote-cheerer/. Accessed 25 Mar 2021
Wu, X., Gong, H., Chen, P., Zhong, Z., Xu, Y.: Surveillance robot utilizing video and audio information. J. Intell. Rob. Syst. 55(4), 403–421 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Antonioni, E., Suriani, V., Solimando, F., Nardi, D., Bloisi, D.D. (2022). Learning from the Crowd: Improving the Decision Making Process in Robot Soccer Using the Audience Noise. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds) RoboCup 2021: Robot World Cup XXIV. RoboCup 2021. Lecture Notes in Computer Science(), vol 13132. Springer, Cham. https://doi.org/10.1007/978-3-030-98682-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-98682-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98681-0
Online ISBN: 978-3-030-98682-7
eBook Packages: Computer ScienceComputer Science (R0)