Abstract
Soccer Simulation 2D (SS2D) is a simulation of a real soccer game in two dimensions. In soccer, passing behavior is an essential action for keeping the ball in possession of our team and creating goal opportunities. Similarly, for SS2D, predicting the passing behaviors of both opponents and our teammates helps manage resources and score more goals. Therefore, in this research, we have tried to address the modeling of passing behavior of soccer 2D players using Deep Neural Networks (DNN) and Random Forest (RF). We propose an embedded data extraction module that can record the decision-making of agents in an online format. Afterward, we apply four data sorting techniques for training data preparation. After, we evaluate the trained models’ performance playing against 6 top teams of RoboCup 2019 that have distinctive playing strategies. Finally, we examine the importance of different feature groups on the prediction of a passing strategy. All results in each step of this work prove our suggested methodology’s effectiveness and improve the performance of the pass prediction in Soccer Simulation 2D games ranging from 5% (e.g., playing against the same team) to 10% (e.g., playing against Robocup top teams).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The dataset and source of this project for reproducing the results are available in “https://github.com/Cyrus2D/Agent2D-DataExtractor”.
References
Mackworth, A.K.: On seeing robots. In: Computer Vision: Systems, Theory and Applications, pp. 1–13. World Scientific (1993)
Nakashima, T., Mifune, S., Henrio, J., Obst, O., Wang, P., Prokopenko, M.: Kick extraction for reducing uncertainty in RoboCup logs. In: Yamamoto, S. (ed.) HIMI 2015. LNCS, vol. 9173, pp. 622–633. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20618-9_61
Fukushima, T., Nakashima, T., Akiyama, H.: Similarity analysis of action trajectories based on kick distributions. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 58–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_5
Michael, O., Obst, O., Schmidsberger, F., Stolzenburg, F.: Analysing soccer games with clustering and conceptors. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 120–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_10
Asali, E., Valipour, M., Zare, N., Afshar, A., Katebzadeh, M., Dastghaibyfard, G.H.: Using machine learning approaches to detect opponent formation. In: 2016 Artificial Intelligence and Robotics (IRANOPEN), pp. 140–144. IEEE (2016)
Suzuki, Y., Nakashima, T.: On the use of simulated future information for evaluating game situations. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 294–308. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_23
Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.: RoboCup: a challenge problem for AI. AI Mag. 18(1), 73–73 (1997)
Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44468-9_46
Prokopenko, M., Wang, P.: Gliders2d: source code base for RoboCup 2D soccer simulation league. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 418–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_33
Kok, J., Vlassis, N., Groen, F.: UvA Trilearn 2003 team description. In: Proceedings CD RoboCup 2003 (2003)
Mugnier, M.-L., Chein, M.: Conceptual graphs: fundamental notions. Rev. d’intell. Artif. 6(4), 365–406 (1992)
Akiyama, H., Nakashima, T., Fukushima, T., Suzuki, Y., Ohori, A.: HELIOS2019: team description paper. In: RoboCup (2019)
Zare, N., et al.: Cyrus 2D simulation 2019. In: RoboCup (2019)
Cheng, Z., et al.: YuShan team description paper for RoboCup2019. In: RoboCup (2019)
Wang, X., et al.: MT2019 Robocup simulation 2D team description. In: RoboCup (2019)
Li, M.: Receptivity: team description paper 2018 fine tuning of agent decision evaluation. In: RoboCup(2019)
Noohpisheh, M., et al.: Razi soccer 2D simulation team description paper 2019. In: RoboCup (2019)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Zare, N., Sarvmaili, M., Sayareh, A., Amini, O., Matwin, S., Soares, A. (2022). Engineering Features to Improve Pass Prediction in Soccer Simulation 2D Games. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds) RoboCup 2021: Robot World Cup XXIV. RoboCup 2021. Lecture Notes in Computer Science(), vol 13132. Springer, Cham. https://doi.org/10.1007/978-3-030-98682-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-98682-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98681-0
Online ISBN: 978-3-030-98682-7
eBook Packages: Computer ScienceComputer Science (R0)