[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Engineering Features to Improve Pass Prediction in Soccer Simulation 2D Games

  • Conference paper
  • First Online:
RoboCup 2021: Robot World Cup XXIV (RoboCup 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13132))

Included in the following conference series:

Abstract

Soccer Simulation 2D (SS2D) is a simulation of a real soccer game in two dimensions. In soccer, passing behavior is an essential action for keeping the ball in possession of our team and creating goal opportunities. Similarly, for SS2D, predicting the passing behaviors of both opponents and our teammates helps manage resources and score more goals. Therefore, in this research, we have tried to address the modeling of passing behavior of soccer 2D players using Deep Neural Networks (DNN) and Random Forest (RF). We propose an embedded data extraction module that can record the decision-making of agents in an online format. Afterward, we apply four data sorting techniques for training data preparation. After, we evaluate the trained models’ performance playing against 6 top teams of RoboCup 2019 that have distinctive playing strategies. Finally, we examine the importance of different feature groups on the prediction of a passing strategy. All results in each step of this work prove our suggested methodology’s effectiveness and improve the performance of the pass prediction in Soccer Simulation 2D games ranging from 5% (e.g., playing against the same team) to 10% (e.g., playing against Robocup top teams).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.robocup.org.

  2. 2.

    The dataset and source of this project for reproducing the results are available in “https://github.com/Cyrus2D/Agent2D-DataExtractor”.

References

  1. Mackworth, A.K.: On seeing robots. In: Computer Vision: Systems, Theory and Applications, pp. 1–13. World Scientific (1993)

    Google Scholar 

  2. Nakashima, T., Mifune, S., Henrio, J., Obst, O., Wang, P., Prokopenko, M.: Kick extraction for reducing uncertainty in RoboCup logs. In: Yamamoto, S. (ed.) HIMI 2015. LNCS, vol. 9173, pp. 622–633. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20618-9_61

    Chapter  Google Scholar 

  3. Fukushima, T., Nakashima, T., Akiyama, H.: Similarity analysis of action trajectories based on kick distributions. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 58–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_5

    Chapter  Google Scholar 

  4. Michael, O., Obst, O., Schmidsberger, F., Stolzenburg, F.: Analysing soccer games with clustering and conceptors. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 120–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_10

    Chapter  Google Scholar 

  5. Asali, E., Valipour, M., Zare, N., Afshar, A., Katebzadeh, M., Dastghaibyfard, G.H.: Using machine learning approaches to detect opponent formation. In: 2016 Artificial Intelligence and Robotics (IRANOPEN), pp. 140–144. IEEE (2016)

    Google Scholar 

  6. Suzuki, Y., Nakashima, T.: On the use of simulated future information for evaluating game situations. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 294–308. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_23

    Chapter  Google Scholar 

  7. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.: RoboCup: a challenge problem for AI. AI Mag. 18(1), 73–73 (1997)

    Google Scholar 

  8. Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44468-9_46

    Chapter  Google Scholar 

  9. Prokopenko, M., Wang, P.: Gliders2d: source code base for RoboCup 2D soccer simulation league. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 418–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_33

    Chapter  Google Scholar 

  10. Kok, J., Vlassis, N., Groen, F.: UvA Trilearn 2003 team description. In: Proceedings CD RoboCup 2003 (2003)

    Google Scholar 

  11. Mugnier, M.-L., Chein, M.: Conceptual graphs: fundamental notions. Rev. d’intell. Artif. 6(4), 365–406 (1992)

    Article  Google Scholar 

  12. Akiyama, H., Nakashima, T., Fukushima, T., Suzuki, Y., Ohori, A.: HELIOS2019: team description paper. In: RoboCup (2019)

    Google Scholar 

  13. Zare, N., et al.: Cyrus 2D simulation 2019. In: RoboCup (2019)

    Google Scholar 

  14. Cheng, Z., et al.: YuShan team description paper for RoboCup2019. In: RoboCup (2019)

    Google Scholar 

  15. Wang, X., et al.: MT2019 Robocup simulation 2D team description. In: RoboCup (2019)

    Google Scholar 

  16. Li, M.: Receptivity: team description paper 2018 fine tuning of agent decision evaluation. In: RoboCup(2019)

    Google Scholar 

  17. Noohpisheh, M., et al.: Razi soccer 2D simulation team description paper 2019. In: RoboCup (2019)

    Google Scholar 

  18. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Zare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zare, N., Sarvmaili, M., Sayareh, A., Amini, O., Matwin, S., Soares, A. (2022). Engineering Features to Improve Pass Prediction in Soccer Simulation 2D Games. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds) RoboCup 2021: Robot World Cup XXIV. RoboCup 2021. Lecture Notes in Computer Science(), vol 13132. Springer, Cham. https://doi.org/10.1007/978-3-030-98682-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98682-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98681-0

  • Online ISBN: 978-3-030-98682-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics