[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CycleGAN Based Motion Artifact Cancellation for Photoplethysmography Wearable Device

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13184))

Included in the following conference series:

Abstract

Motion artifacts (MA) in photoplethysmography (PPG) signals is a challenging problem in signal processing today although various methods have been researched and developed. Using deep learning techniques recently has demonstrated their performance to overcome many limitations in traditional ones. In this study, we develop a protocol to build the PPG dataset and a cycleGAN-based model which can use to remove MA from PPG signals at the radial artery. We verified that the assumption of noisy PPG signals is a linear combination of clean PPG and accelerator (ACC) signals is not strong enough. Our evaluation of the CycleGAN model for reconstructing PPG signals at the radial artery which consisted of two opposite phases was feasible but the quality of signals needs more further research.

This work was supported by an National Research Foundation grant of Korea Government (2019R1A2C1089139).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  2. Zargari, A.H.A., Aqajari, S.A.H., Khodabandeh, H., Rahmani, A.M., Kurdahi, F.: An accurate non-accelerometer-based PPG motion artifact removal technique using CycleGAN. arXiv e-prints (2021). arXiv-2106

    Google Scholar 

  3. Kamshilin, A.A., Margaryants, N.B.: Origin of photoplethysmographic waveform at green light. Phys. Procedia 86, 72–80 (2017)

    Article  Google Scholar 

  4. Hoang Long, N.M., Kim, J.-J., Chung, W.-Y.: A prototype wristwatch device for monitoring vital signs using multi-wavelength photoplethysmography sensors. In: Singh, M., Kang, D.-K., Lee, J.-H., Tiwary, U.S., Singh, D., Chung, W.-Y. (eds.) IHCI 2020. LNCS, vol. 12616, pp. 312–318. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68452-5_32

    Chapter  Google Scholar 

  5. Lee, J., Matsumura, K., Yamakoshi, K.I., Rolfe, P., Tanaka, S., Yamakoshi, T.: Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1724–1727. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Young Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, N.M.H., Kim, J.J., Lee, B.G., Chung, W.Y. (2022). CycleGAN Based Motion Artifact Cancellation for Photoplethysmography Wearable Device. In: Kim, JH., Singh, M., Khan, J., Tiwary, U.S., Sur, M., Singh, D. (eds) Intelligent Human Computer Interaction. IHCI 2021. Lecture Notes in Computer Science, vol 13184. Springer, Cham. https://doi.org/10.1007/978-3-030-98404-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98404-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98403-8

  • Online ISBN: 978-3-030-98404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics