[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Machine Learning Techniques for Grading of PowerPoint Slides

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13184))

Included in the following conference series:

Abstract

This paper describes the design and implementation of automated techniques for grading students’ PowerPoint slides. Preparing PowerPoint slides for seminars, workshops, and conferences is one of the crucial activity of graduate and undergraduate students. Educational institutes use rubrics to assess the PowerPoint slides’ quality on different grounds, such as the use of diagrams, text highlighting techniques, and animations. The proposed system describes a method and dataset designed to automate the task of grading students’ PowerPoint slides. The system aims to evaluate students’ knowledge about various functionalities provided by presentation software. Multiple machine learning techniques are used to grade presentations. Decision Tree classifiers gives 100% accuracy while predicting grade of PowerPoint presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hearst, M.A.: The debate on automated essay grading. IEEE Intell. Syst. Appl. 15, 22–37 (2000)

    Article  Google Scholar 

  2. Yang, Y., Buckendahl, C.W., Juszkiewicz, P.J., Bhola, D.S.: A review of strategies for validating computer-automated scoring. Appl. Meas. Educ. 15(4), 391–412 (2002)

    Article  Google Scholar 

  3. Madnani, N., Cahill, A.: Automated scoring: beyond natural language processing. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1099–1109 (2018)

    Google Scholar 

  4. Ullmann, T.D.: Automated analysis of reflection in writing: validating machine learning approaches. Int. J. Artif. Intell. Educ. 29(2), 217–257 (2019)

    Article  Google Scholar 

  5. Bashir, A., Hassan, A., Rosman, B., Duma, D., Ahmed, M.: Implementation of a neural natural language understanding component for Arabic dialogue systems. Proc. Comput. Sci. 142, 222–229 (2018)

    Article  Google Scholar 

  6. Leng, Y., Yu, L., Xiong, J.: DeepReviewer: collaborative grammar and innovation neural network for automatic paper review, pp. 395–403 (2019)

    Google Scholar 

  7. Peng, X., Ke, D., Chen, Z., Xu, B.: Automated Chinese essay scoring using vector space models. In: 2010 4th International Universal Communication Symposium, Beijing, pp. 149–153 (2010)

    Google Scholar 

  8. Al-Jouie, M., Azmi, A.M.: Automated evaluation of school children essays in Arabic. Proc. Comput. Sci. 117, 19–22 (2017)

    Article  Google Scholar 

  9. Azmi Aqil M., Al-Jouie M.F. and Hussain M., AAEE-Automated evaluation of students’ essays in Arabic language, Information Processing & Management, 56(5), pp. 1736–1752

    Google Scholar 

  10. Walia, T., Josan, G., Singh, A.: An efficient automated answer scoring system for the Punjabi language. Egypt. Inform. J. 20, 89–96 (2018)

    Article  Google Scholar 

  11. Anak, R., Putri, A., Dyah, L., Ihsan, I., Diyanatul, H., Purnamasari, P.: Automatic essay grading system for Japanese language examination using winnowing algorithm. In: International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 565–569 (2018)

    Google Scholar 

  12. Ramalingam, V.V., Pandian, A., Chetry, P., Nigam, H.: Automated essay grading using machine learning algorithm. J. Phys.: Conf. Ser. (2018)

    Google Scholar 

  13. Haendchen Filho, A., Prado, H., Ferneda, E., Nau, J.: An approach to evaluate adherence to the theme and the argumentative structure of essays. Proc. Comput. Sci. 12, 788–797 (2018)

    Article  Google Scholar 

  14. Fazal, A., Hussain, F., Dillon, T.: An innovative approach for automatically grading spelling in essays using rubric-based scoring. J. Comput. Syst. Sci. 79, 1040–1056 (2013)

    Article  Google Scholar 

  15. Olowolayemo, A., Nawi, S., Mantoro, T.: Short answer scoring in English grammar using text similarity measurement. In: International Conference on Computing, Engineering, and Design (ICCED), pp. 131–136 (2018)

    Google Scholar 

  16. Janda, H.K., Pawar, A., Du, S., Mago, V.: Syntactic, semantic and sentiment analysis: the joint effect on automated essay evaluation. IEEE Access 7, 108486–108503 (2019)

    Article  Google Scholar 

  17. George, N., Sijimol, P.J., Varghese, S.M.: Grading descriptive answer scripts using deep learning. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 8(5) (2019)

    Google Scholar 

  18. Jin, C., He, B., Hui, K., Sun, L.: TDNN: a two-stage deep neural network for prompt-independent automated essay scoring. In: ACL, Melbourne, Australia (2018)

    Google Scholar 

  19. Surya, K., Gayakwad, E., Nallakaruppan, M.: Deep learning for short answer scoring. Int. J. Recent Technol. Eng. 7, 1712–1715 (2019)

    Google Scholar 

  20. Rodriguez, P., Jafari, A., Ormerod, C.: Language Models and Automated Essay Scoring (2019)

    Google Scholar 

  21. Bauer, C.: Grading rubrics for engineering presentations and reports. In: ASME International Mechanical Engineering Congress and Exposition (2008)

    Google Scholar 

  22. Peeters, M.J., Sahloff, E.G., Stone, G.E.: A standardized rubric to evaluate student presentations. Am. J. Pharm. Educ. (2010)

    Google Scholar 

  23. Borade, J.G., Netak, L.D.: Automated grading of essays: a review. In: Singh, M., Kang, D.-K., Lee, J.-H., Tiwary, U.S., Singh, D., Chung, W.-Y. (eds.) IHCI 2020. LNCS, vol. 12615, pp. 238–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68449-5_25

    Chapter  Google Scholar 

  24. Borade, J.G., Kiwelekar, A.W., Netak, L.D.: Feature extraction for automatic grading of students’ presentations. In: Tuba, M., Akashe, S., Joshi, A. (eds.) ICT Systems and Sustainability. LNCS, vol. 321, pp. 293–301. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5987-4_30

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti G. Borade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borade, J.G., Netak, L.D. (2022). Machine Learning Techniques for Grading of PowerPoint Slides. In: Kim, JH., Singh, M., Khan, J., Tiwary, U.S., Sur, M., Singh, D. (eds) Intelligent Human Computer Interaction. IHCI 2021. Lecture Notes in Computer Science, vol 13184. Springer, Cham. https://doi.org/10.1007/978-3-030-98404-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98404-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98403-8

  • Online ISBN: 978-3-030-98404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics