[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PortNOIE: A Neural Framework for Open Information Extraction for the Portuguese Language

  • Conference paper
  • First Online:
Computational Processing of the Portuguese Language (PROPOR 2022)

Abstract

Open Information Extraction (OpenIE) is the task of extracting structured information from text. Recent advances in applying Deep Learning to OpenIE tasks have improved the state of the art for the task, although few works have been produced for languages other than English. In this work, we propose PortNOIE, a neural framework for open information extraction for the Portuguese language. We evaluate our method on a manually annotated corpus of Open IE extractions, obtaining better performance than the current state of the art for OpenIE for Portuguese, both based on rule-based approaches or neural methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://formas.ufba.br/.

  2. 2.

    https://pytorch.org/.

  3. 3.

    https://spacy.io/.

References

  1. de Abreu, S.C., Vieira, R.: Relp: Portuguese open relation extraction. Knowl. Organ. 44(3), 163–177 (2017)

    Google Scholar 

  2. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: Flair: an easy-to-use framework for state-of-the-art NLP. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 54–59 (2019)

    Google Scholar 

  3. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction for the web. In: IJCAI, vol. 7, pp. 2670–2676 (2007)

    Google Scholar 

  4. Cabral, B.S., Glauber, R., Souza, M., Claro, D.B.: CrossOIE: Cross-Lingual Classifier for Open Information Extraction. In: Quaresma, P., Vieira, R., Aluísio, S., Moniz, H., Batista, F., Gonçalves, T. (eds.) PROPOR 2020. LNCS (LNAI), vol. 12037, pp. 368–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41505-1_35

    Chapter  Google Scholar 

  5. Cabral, B.S., Souza, M., Claro, D.B.: Explainable OpenIE classifier with Morpho-syntactic rules. In: HI4NLP@ ECAI, pp. 7–15 (2020)

    Google Scholar 

  6. Collovini, S., et al.: IberLEF 2019 Portuguese named entity recognition and relation extraction tasks. In: Proceedings of the Iberian Languages Evaluation Forum, vol. 2421, pp. 390–410. CEUR-WS.org (2019)

    Google Scholar 

  7. Cui, L., Wei, F., Zhou, M.: Neural open information extraction. arXiv preprint arXiv:1805.04270 (2018)

  8. Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In: 22nd International Conference on World Wide Web, pp. 355–366. ACM (2013)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  10. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,, Edinburgh, Scotland, pp. 1535–1545. Association for Computational Linguistics, July 2011

    Google Scholar 

  11. Gamallo, P., Garcia, M.: Multilingual open information extraction. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 711–722. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4_72

  12. Gamallo, P., Garcia, M., Fernández-Lanza, S.: Dependency-based open information extraction. In: Joint Workshop on Unsupervised and Semi-supervised Learning in NLP, pp. 10–18. Association for Computational Linguistics (2012)

    Google Scholar 

  13. Gamallo, P., Garcia, M., Pineiro, C., Martinez-Castano, R., Pichel, J.C.: LinguaKit: a big data-based multilingual tool for linguistic analysis and information extraction. In: Fifth International Conference on Social Networks Analysis, Management and Security, pp. 239–244. IEEE (2018)

    Google Scholar 

  14. Gardner, M., et al.: AllenNLP: a deep semantic natural language processing platform (2017)

    Google Scholar 

  15. Glauber, R., Claro, D.B., de Oliveira, L.S.: Dependency parser on open information extraction for Portuguese texts - DptOIE and dependentie on IberLEF. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019), vol. 2421, pp. 442–448. CEUR-WS.org (2019)

    Google Scholar 

  16. Hartmann, N.S., Fonseca, E.R., Shulby, C.D., Treviso, M.V., Rodrigues, J.S., Aluísio, S.M.: Portuguese word embeddings: evaluating on word analogies and natural language tasks. In: XI Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana, Porto Alegre, RS, Brasil, pp. 122–131. SBC (2017)

    Google Scholar 

  17. He, L., Lee, K., Lewis, M., Zettlemoyer, L.: Deep semantic role labeling: what works and what’s next. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, pp. 473–483. Association for Computational Linguistics, July 2017. https://doi.org/10.18653/v1/P17-1044

  18. Hohenecker, P., Mtumbuka, F., Kocijan, V., Lukasiewicz, T.: Systematic comparison of neural architectures and training approaches for open information extraction. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8554–8565 (2020)

    Google Scholar 

  19. Hu, X., Zhang, C., Xu, Y., Wen, L., Yu, P.S.: Selfore: self-supervised relational feature learning for open relation extraction. arXiv preprint arXiv:2004.02438 (2020)

  20. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  21. Jia, S., Xiang, Y.: Hybrid neural tagging model for open relation extraction. arXiv preprint arXiv:1908.01761 (2019)

  22. Kolluru, K., Adlakha, V., Aggarwal, S., Chakrabarti, S., et al.: OpenIE 6: Iterative grid labeling and coordination analysis for open information extraction. arXiv preprint arXiv:2010.03147 (2020)

  23. Lei, T.: When attention meets fast recurrence: training language models with reduced compute (2021)

    Google Scholar 

  24. Nivre, J., et al.: Universal dependencies v2: an evergrowing multilingual treebank collection. In: Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France, pp. 4034–4043. European Language Resources Association, May 2020

    Google Scholar 

  25. de Oliveira, L.S., Glauber, R., Claro, D.B.: DependentIE: an open information extraction system on Portuguese by a dependence analysis. Encontro Nacional de Inteligência Artificial e Computacional (2017)

    Google Scholar 

  26. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1532–1543. Association for Computational Linguistics, October 2014

    Google Scholar 

  27. Pereira, V., Pinheiro, V.: Report-um sistema de extração de informações aberta para língua portuguesa. In: X Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana, pp. 191–200. SBC (2015)

    Google Scholar 

  28. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In: Natural Language Processing Using Very Large Corpora, pp. 157–176. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-2390-9

  29. Ro, Y., Lee, Y., Kang, P.: Multi2OIE: multilingual open information extraction based on multi-head attention with BERT. arXiv preprint arXiv:2009.08128 (2020)

  30. Sena, C.F.L., Claro, D.B.: InferPortOIE: a Portuguese open information extraction system with inferences. Nat. Lang. Eng. 25(2), 287–306 (2019)

    Article  Google Scholar 

  31. Sena, C.F.L., Claro, D.B.: PragmaticOIE: a pragmatic open information extraction for Portuguese language. Knowl. Inf. Syst. 62(9), 3811–3836 (2020)

    Article  Google Scholar 

  32. Sena, C.F.L., Glauber, R., Claro, D.B.: Inference approach to enhance a Portuguese open information extraction. In: Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 3: ICEIS. pp. 442–451. INSTICC, SciTePress (2017)

    Google Scholar 

  33. Souza, F., Nogueira, R., Lotufo, R.: BERTimbau: pretrained BERT models for Brazilian Portuguese. In: 9th Brazilian Conference on Intelligent Systems (2020)

    Google Scholar 

  34. Stanovsky, G., Michael, J., Zettlemoyer, L., Dagan, I.: Supervised open information extraction. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers), pp. 885–895 (2018)

    Google Scholar 

  35. Sun, M., Li, X., Wang, X., Fan, M., Feng, Y., Li, P.: Logician: a unified end-to-end neural approach for open-domain information extraction. In: Eleventh ACM International Conference on Web Search and Data Mining, pp. 556–564. ACM (2018)

    Google Scholar 

  36. Sun, M., Li, X., Wang, X., Fan, M., Feng, Y., Li, P.: Logician: a unified end-to-end neural approach for open-domain information extraction. In: Eleventh ACM International Conference on Web Search and Data Mining, pp. 556–564. ACM (2018)

    Google Scholar 

Download references

Acknowledgement

We would like to thank FAPESB for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Cabral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabral, B., Souza, M., Claro, D.B. (2022). PortNOIE: A Neural Framework for Open Information Extraction for the Portuguese Language. In: Pinheiro, V., et al. Computational Processing of the Portuguese Language. PROPOR 2022. Lecture Notes in Computer Science(), vol 13208. Springer, Cham. https://doi.org/10.1007/978-3-030-98305-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98305-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98304-8

  • Online ISBN: 978-3-030-98305-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics